• Title/Summary/Keyword: Pt thin-film

Search Result 709, Processing Time 0.032 seconds

Preparation and Characterization of $BaTiO_3-CuFe_2O_4$ Bi-Layer Thin Films Prepared By Pulsed Laser Deposition

  • Yoon, Dong-Jin;Kim, Kyung-Man;Lee, Jai-Yeoul;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.209-209
    • /
    • 2010
  • Multiferroic properties of $BaTiO_3-CuFe_2O_4$ thin films grown on highly-textured Pt(111)/$TiO_2/SiO_2$/Si(100) substrates were studied. $CuFe_2O_4$ ceramic target was synthesized by mixing oxide powders of CuO, $Fe_2O_03$, $BaTiO_3$ ceramic target was also prepared separately. The film structure was of bi-layer type, where $BaTiO_3$ layer lies underneath of $CuFe_2O_4$ layer, where both layers were grown by pulsed laser deposition technique. We will report the ferroelectric and magnetic properties of $BaTiO_3-CuFe_2O_4$ bi-layer films in some detail.

  • PDF

Fabrication of 3C-SiC micro heaters and its characteristics (3C-SiC 마이크로 히터의 제작과 그 특성)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.311-315
    • /
    • 2009
  • This paper describes the characteristics of a poly 3C-SiC micro heater which was fabricated on AlN(0.1 $\mu$m)/3C-SiC(1.0 $\mu$m) suspended membranes by surface micro-machining technology. The 3C-SiC and AlN thin films which have wide energy band gap and very low lattice mismatch were used sensors for high temperature and voltage environments. The 3C-SiC thin film was used as micro heaters and temperature sensor materials simultaneously. The implemented 3CSiC RTD(resistance of temperature detector) and the power consumption of micro heaters were measured and calculated. The TCR(thermal coefficient of the resistance) of 3C-SiC RTD is about -5200 ppm/$^{\circ}C$ within a temperature range from 25 $^{\circ}C$ to 50 $^{\circ}C$ and -1040 ppm/$^{\circ}C$ at 500 $^{\circ}C$. The micro heater generates the heat about 500 $^{\circ}C$ at 10.3 mW. Moreover, durability of 3C-SiC micro heaters in high voltages is better than Pt micro heaters. A thermal distribution measured and simulated by IR thermovision and COMSOL is uniform on the membrane surface.

Effects of Substrate Temperatures on the Crystallinity and Electrical Properties of PLZT Thin Films (기판온도에 따른 PLZT 박막의 결정성과 전기적 특성)

  • Lee, In-Seok;Yoon, Ji-Eun;Kim, Sang-Jih;Son, Young-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • PLZT thin films were deposited on platinized silicon (Pt/$TiSiO_2$/Si) substrate by RF magnetron sputtering. A $TiO_2$ buffer layer was fabricated, prior to deposition of PLZT films. the layer was strongly affected the crystallographic orientation of the PLZT films. X-ray diffraction was performed on the films to study the crystallization of the films as various substrate temperatures (Ts). According to increasing Ts, preferred orientation of films was changed (110) plane to (111) plane. The ferroelectric, dielectric and electrical properties of the films were also investigated in detail as increased substrate temperatures. The PLZT films deposited at $400^{\circ}C$ showed good ferroelectric properties with the remnant polarization of $15.8{\mu}C/cm^2$ and leakage current of $5.4{\times}10^{-9}\;A/cm^2$.

Polarized Raman Scattering Study of Highly(111)-oriented PZT Films in the Rhombohedral-Phase Field

  • 이현정;박정환;장현명
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.174-174
    • /
    • 2003
  • Highly (111)-oriented PZT [Pb(Zrl-xTix)O3] thin films in the Zr-rich rhombohedral phase-field were successfully fabricated on Pt(111)/Ti/SiO2/Si substrates by combining PLD method with sol-gel process. These highly (111)-oriented films can be used as model systems for polarized Raman scattering study of PZT in the rhombohedral-Phase field because the (111)-direction is the principal off-center axis of the rhombohedral ferroelectricity. For this purpose, we have fabricated PZT films employing two distinctive compositions : one with Zr/Ti = 90/10 (abbreviated as PZT90/10) and the other with Zr/Ti= 60/40 (PZT60/40). The PZT90/10 film belongs to the octahedrally distorted FR(LT) phase with a cell-doubled structure, whereas the PZT60/40 is in the high-temperature FR(HT) phase-field at room temperature. To clearly separate E(TO) phonon modes from Al(TO) modes of the (111)-oriented rhombohedral film, we have suitably devised Z(X,Y)Z and Z(X,X)Z backscattering geometries for E(TO) and Al (TO), respectively. The polarized scattering experiment demonstrated that both types of (111)-oriented rhombohedral films closely followed the Raman selection rule.

  • PDF

Study on the Shift in the P-E Hysteresis Curve and the Fatigue Behavior of the PZT Capacitors Fabricated by Reactive Sputtering (반응성 스퍼터링법으로 형성시킨 PZT 커패시티의 P-E 이력곡선의 이동현상 및 피로 특성 연구)

  • Kim, Hyun-Ho;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.983-989
    • /
    • 2005
  • [ $PZT(Pb(Zr,Ti)O_3)$ ] thin films were deposited by multi-target reactive sputtering method on $RuO_2$ substrates. Pure perovskite phase PZT films could be obtained by introducing Ti-oxide seed layer on the $RuO_2$ substrates prior to PZT film deposition. The PZT films deposited on the $RuO_2$ substrates showed highly voltage-shifted hysteresis loop compared with the films deposited on the Pt substrates. The surface of $RuO_2$ substrate was found to be reduced to metallic Ru in vacuum at elevated temperature, which caused the formation of oxygen vacancies at the initial stage of PZT film deposition and gave rise to the voltage shift in the P-E hysteresis loop of the PZT capacitor. The fatigue characteristics of the PZT capacitors under unipolar wane electric field were different from those under bipolar wane. The fatigue test under unipolar wane showed the increase of polarization. It was thought that the ferroelectric domains which had been pinned by charged defects such as oxygen vacancies and the charged defects were reduced in number by combining with the electrons injected from the electrode under unipolar wave, resulting in the relaxation of the ferroelectric domains and the increase of polarization.

Improved Uniformity in Resistive Switching Characteristics of GeSe Thin Film by Ag Nanocrystals

  • Park, Ye-Na;Shin, Tae-Jun;Lee, Hyun-Jin;Lee, Ji-Soo;Jeong, Yong-Ki;Ahn, So-Hyun;Lee, On-You;Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.237.2-237.2
    • /
    • 2013
  • ReRAM cell, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of conductive filament in a solid electrolyte [1,2]. Especially, Chalcogenide-based ReRAM have become a promising candidate due to the simple structure, high density and low power operation than other types of ReRAM but the uniformity of switching parameter is undesirable. It is because diffusion of ions from anode to cathode in solid electrolyte layer is random [3]. That is to say, the formation of conductive filament is not go through the same paths in each switching cycle which is one of the major obstacles for performance improvement of ReRAM devices. Therefore, to control of nonuniform conductive filament formation is a key point to achieve a high performance ReRAM. In this paper, we demonstrated the enhanced repeatable bipolar resistive switching memory characteristics by spreading the Ag nanocrystals (Ag NCs) on amorphous GeSe layer compared to the conventional Ag/GeSe/Pt structure without Ag NCs. The Ag NCs and Ag top electrode act as a metal supply source of our devices. Excellent resistive switching memory characteristics were obtained and improvement of voltage distribution was achieved from the Al/Ag NCs/GeSe/Pt structure. At the same time, a stable DC endurance (>100 cycles) and an excellent data retention (>104 sec) properties was found from the Al/Ag NCs/GeSe/ Pt structured ReRAMs.

  • PDF

A Study on Structure and Acoustic Properties of ZnO transducer by RF Magnetron Sputter (RF Magnetron Sputter로 증착한 ZnO 압전변환기의 구조 및 음향특성에 관한 연구)

  • Lee, Jong-Duk;Ko, Sang-Choon;Song, Joon-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1245-1247
    • /
    • 1995
  • In this paper, Analyzed structual property using SEM and XRD. The longer distance between substrate and target enhance crystalographic orientation of (110)plane, but inhibit growth of (002)plane. Also, deposited ZnO thin film on electrode layer inhibit crystalographic orientation of (002)plane, expecially Al electrode inhibit stronger than Pt layer. And using fabricated transducer, analyzed eletric and frequency characteristics.

  • PDF

Surface Analysis of PZT Film Prepared by Sputting Method (SPUTTERING법에 의해 성장시킨 PZT박막의 표면 분석)

  • 김영관;박주상;추정우;손병청;이전국
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.2
    • /
    • pp.107-112
    • /
    • 1996
  • Thin films of $Pb(Zr_xTi_{1-x})O_3$)PZT) were grown on $Pt/SiO_2/Si(100)$ at various temperatures by RF magnetron sputtering method. Surface morphology of these films were studied by using Atomic Force Microscopy(AFM). These films were also analyzed by using Atomic Force Microscopy(AFM). These films were also analyzed by using X-ray photoemission spectroscopy(XPS) for determining their chemical composition and their depth profile. It was found that the films grown at the substrated temperature of $300^{\circ}C$ have much more smooth surface characteristics in comparison to those films grown at room temperature, which may be explained in terms of surface mobility of ad-atoms such as Pb. It was also found that Pb enrichment in the near surface region enhanced for the films grown at higher substate temperature.

  • PDF

Fabrication and Performance Test of MEMS Catalytic Combustors Using Photosensitive Glass Wafer (감광유리를 이용한 MEMS 촉매 연소기의 제작 및 성능 평가)

  • Jin, Jung-Kun;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.237-242
    • /
    • 2009
  • MEMS catalytic combustors were fabricated to use in micro-power sources as a heat source. The combustor was fabricated by photolithography and anisotropic wet etching of photosensitive glass wafers. Two different catalyst loading methods were used to complete the fabrication of the combustors. For thin film type, the $Al_2O_3$ was washcoated on the surface of the combustion chamber as a catalyst support, and for packed-bed type, ceramic foam was inserted after Pt was coated. The volume of the combustors was 1.8 $cm^3$ and 16W of heat was generated using the fabricated combustors with hydrogen. The energy density of combustor was about 8.9 W/$cm^3$.