• 제목/요약/키워드: Pt nanocatalyst

검색결과 12건 처리시간 0.045초

음이온 교환막 수전해용 Fe-Ni-Pt 나노촉매 제조 및 특성 (Preparation and Characterization of Fe-Ni-Pt Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis)

  • 이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.421-430
    • /
    • 2023
  • Fe-Ni-Pt nanocatalysts were loaded on carbon black powders which were synthesized by a spontaneous reduction reaction of iron (II) acetylacetonate, nickel (II) acetylacetonate and platinum (II) acetylacetonate. The morphology and the loading weight of Fe-Ni-Pt nanoparticles were characterized by transmission electron microscopy and thermogravimetric analyzer. The amount of Fe-Ni-Pt catalyst supported on the carbon black surface was about 6.42-9.28 wt%, and the higher the Fe content and the lower the Pt content, the higher the total amount of the metal catalyst supported. The Brunauer-Emmett-Teller Analysis (BET) specific surface area of carbon black itself without metal nanoparticles supported was 233.9 m2/g, and when metal nanoparticles were introduced, the specific surface area value was greatly reduced. This is because the metal nanocatalyst particles block the pore entrance of the carbon black, and thereby the catalytic activity of the metal catalysts generated inside the pores is reduced. From the I-V curves, as the content of the Pt nanocatalyst increased, the electrolytic properties of water increased, and the activity of the metal nanocatalyst was in the order of Pt > Ni > Fe.

음이온 교환막 수전해용 Pt-Fe/카본블랙 나노 촉매 제조 및 특성 (Preparation and Characterization of Pt-Fe/Carbon Black Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis)

  • 조성국;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.715-722
    • /
    • 2022
  • Pt-Fe/carbon black nanocatalysts were prepared by spontaneous reduction reaction of Platinum(II) acetylacetonate and Iron(II) acetylacetonate in a nucleophilic solvent and they were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analyzer (EDS), thermogravimetric analyzer (TGA), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) surface area analysis and anion exchange membrane (AEM) water electrolysis test station. The distribution of the Pt and Fe nanoparticles on carbon black was observed by TEM, and the loading weight of Pt-Fe nanocatalysts on the carbon black was measured by TGA. Elemental ratio of Fe:Pt was estimated by EDS and it was found that elemental ratio of Pt and Fe was changed in the range of 1:0 to 0:1, and the loading weight of Pt-Fe nanoparticles on the carbon black was 5.95-6.78 wt%. Specific surface area was greatly reduced because Pt-Fe nanocatalysts blocked the pores. I-V characteristics were estimated.

자발적 환원반응에 의한 음이온 교환막 수전해용 Pt-Ni 나노 촉매 제조 및 특성 (Preparation and Characterization of Pt-Ni Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis by Spontaneous Reduction Reaction)

  • 장붕비;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제33권3호
    • /
    • pp.202-208
    • /
    • 2022
  • Pt-Ni nanocatalysts were loaded on carbon black by spontaneous reduction reaction of platinum (II) acetylacetonate and nickel (II) acetylacetonate, and they were characterized by transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), energy dispersive x-ray analyzer (EDS), BET surface area and fuel cell test station. The distribution of the Pt and Ni nanoparticles was observed by TEM, and the loading weight of Pt-Ni nanocatalysts on the carbon black was measured by TGA. The elemental ratio of Pt and Ni was estimated by EDS. It was found that the loading weight of Pt-Ni nanoparticles was 5.54 wt%, and the elemental ratio of Pt and Ni was 0.48:0.35. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

Ni-Pt 나노 촉매의 혼합비가 음이온 교환막 수전해 특성에 미치는 영향 (Effect of the Mixture Ratio of Ni-Pt Nanocatalysts on Water Electrolysis Characteristics in AEM System)

  • 노립신;대관하;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.285-292
    • /
    • 2021
  • To study the effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in anion exchange membrane system, Ni-Pt nanocatalysts were loaded on carbon black by using a spontaneous reduction reaction of acetylacetonate compounds. The loading weight of Ni-Pt nanocatalysts on the carbon black was measured by thermogravimetric analyzer and the elemental ratio of Ni and Pt was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Ni-Pt nanoparticles was 5.36-5.95 wt%, and the loading weight increased with increasing Pt wt%. As the Ni-Pt loading weight increased, the specific surface area decreased, because Ni-Pt nanoparticles block the pores of carbon black. It was confirmed by BET analysis and dynamic vapor sorption analysis. I-V characteristics were estimated.

아크플라즈마 증착을 이용한 나노촉매 재료 제작 (Nanocatalyst Materials Prepared by Arc Plasma Deposition)

  • 김상훈
    • 공업화학
    • /
    • 제25권4호
    • /
    • pp.341-345
    • /
    • 2014
  • 아크플라즈마를 이용해 촉매입자를 촉매지지체에 건식으로 직접 분산하는 기술에 대한 개괄과 응용사례를 소개한다. 이 방법은 촉매입자를 담지하는 일반적인 방법인 습식법의 단점을 개선하고자 촉매입자를 기화하여 직접 담지체에 증착하는 방법이다. 아크플라즈마 증착을 이용해 제작한 촉매재료의 성능을 연구한 사례 세가지를 소개한다. 이 사례들을 통해 이 방법으로 증착되는 나노입자의 크기가 1~5 nm 정도이고 일반적으로 습식 방법보다 촉매성능면에서 우수한 성능을 나타낸다는 것을 보인다.

고온에서 안정적인 TiO2/Pt/SiO2 하이브리드 나노촉매의 제작 및 촉매 특성 (Synthesis and Catalytic Characteristics of Thermally Stable TiO2/Pt/SiO2 Hybrid Nanocatalysts)

  • ;정찬호;김선미;윤중열;박정영
    • 한국분말재료학회지
    • /
    • 제18권6호
    • /
    • pp.532-537
    • /
    • 2011
  • Thermally stable $TiO_2$/Pt/$SiO_2$ core-shell nanocatalyst has been synthesized by chemical processes. Citrated capped Pt nanoparticles were deposited on amine functionalized silica produced by Stober process. Ultrathin layer of titania was coated on Pt/$SiO_2$ for preventing sintering of the metal nanoparticles at high temperatures. Thermal stability of the metal-oxide hybrid catalyst was demonstrated heating the sample up to $600^{\circ}C$ in air and by investigating the morphology and integrity of the structure by transmission electron spectroscopy. The surface analysis of the constituent elements was performed by X-ray photoemission spectroscopy. The catalytic activity of the hybrid catalysts was investigated by CO oxidation reaction with oxygen as a model reaction.

유기 리간드 제어를 통한 고분산 팔라듐 나노 촉매의 합성 및 음이온교환막 연료전지를 위한 산소 환원 반응 특성 분석 (Synthesis of Highly Dispersed Pd Nanocatalysts Through Control of Organic Ligands and Their Electrochemical Properties for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells)

  • 성후광;;장정희;정남기
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.633-639
    • /
    • 2018
  • In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.

Pd 나노 촉매가 도입된 나피온 막의 기계적 강도 및 고분자 전해질막 연료전지 (PEMFC) 성능 (Mechanical Property of Nafion Membrane Incorporated with Pd Nanocatalyst and the Performance of PEMFC)

  • 이우금;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제27권3호
    • /
    • pp.270-275
    • /
    • 2016
  • A simple solid state incorporation method was employed in order to incorporate Pd nanocatalyst into a Nafion film for polymer electrolyte membrane fuel cell (PEMFC) via the reduction of palladium (II) bis (acetylacetonate), $Pd(acac)_2$. It was sublimed, penetrated into Nafion film and then reduced to Pd nanoparticles simultaneously in a glass reactor of N2 atmosphere at $180^{\circ}C$ for 1, 3 and 5 min. This reaction was took place without any reducing agent and any solvent. The morphology of the Pd nanoparticles was observed by transmission electron microscopy (TEM), and Pd distribution was analyzed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). And 23% modification of tensile strength of Pd/Nafion composite film was measured by universal testing machine and I-V curve was estimated by using a unit cell with $5{\times}5cm^2$ active area.

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Prepared with Arc Plasma Deposition under CO Oxidation

  • Jung, Chan Ho;Kim, Sang Hoon;Sahu, Nruparaj;Park, Dahee;Yun, Jung Yeul;Ha, Heonphil;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.288-288
    • /
    • 2013
  • We report the catalytic activity of Au/$TiO_2$ and Pt/$TiO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. Using APD, the catalyst nanoparticles were well dispersed on $TiO_2$ powder with an average particle size (2~4 nm) well below that of nanoparticles prepared by the sol-gel method (10 nm). We found that the average particle size of the dispersed gold nanoparticles can be controlled by changing the plasma discharge voltage of APD. Accordingly, the amount of loaded gold on the $TiO_2$ powder increased with increasing discharge voltage, but the specific surface area of the Au/$TiO_2$ samples decreased. As for catalytic reactivity, Au/$TiO_2$ showed a higher catalytic activity than Pt/$TiO_2$ in CO oxidation. The catalytic activity of the Au/$TiO_2$ samples showed size dependence where higher catalytic activity occurred on smaller gold nanoparticles. The study suggests that APD is a simple way to fabricate catalytically active nanocatalysts.

  • PDF

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF