• Title/Summary/Keyword: Pt anode

Search Result 141, Processing Time 0.029 seconds

Characterization for Performance of Zn-Air Recharegeable Batteries on Different Composition in Acidic Electrolyte (산성용액에서 전해액 조성에 따른 아연공기 이차전지의 성능변화)

  • DAI, GUANXIA;LU, LIXIN;SHIM, JOONGPYO;LEE, HONG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.401-409
    • /
    • 2021
  • The combination of different concentrations of ZnSO4 in acidic solution as electrolyte in Zn-air batteries was investigated by Zn symmetrical cell test, half-cell and full cell tests. Using 1 M ZnSO4 + 0.05 M H2SO4 as electrolyte and MnO2 as air cathode catalyst with Zn foil anode, this combination had a satisfactory performance with balance of electrochemical activity and stability. Its electrochemical activity was matched to or even better than the PtRu catalyst in different current density. And its cycle life was improved (more than 100 cycles stable) by suppressing the growth of zinc dendrites on anode obviously. This electrolyte overcame the shortcomings of alkaline electrolyte that are easy to react with CO2 in the air, severely growth of Zn dendrites caused by uneven plating/stripping of Zn.

The performance of PEMFC during exposure to simultaneous sulfur impurity poisoning on cathode and anode (공기극과 연료극의 복합 황불순물에 의한 고분자 전해질막 연료전지의 성능에 미치는 영향)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.594-598
    • /
    • 2012
  • Polymer electrolyte membrane fuel cell(PEMFC) performance degrades seriously when sulfur dioxide and hydrogen sulfide are contaminated in the fuel gas at anode and air source at cathode, respectively. This paper reveals the effect of the combined sulfur impurity poisoning on both PEMFC cathode and anode parts through measuring electrical performance on single FC operated under 1 ppm to 10 ppm impurity gases. The severity of $SO_2$ and $H_2S$ poisoning depended on concentrations of impurity gases under optimum operating conditions($65^{\circ}C$ of cell temperature and 100 % relative humidity). Sulfur adsorption occured on the surface of Pt catalyst layer on MEA. In addition, MEA poisoning by impurity gases were cumulative. After four consecutive poisonings with 1, 3, 5 to 10 ppm, the fuel cell performance of PEMFC was decrease upto 0.54 V(76 %) from 0.71 V.

A Study on the Apparatus for Measuring Oxygen-Permeability of Membranes with a Multi-Electrode Oxygen Sensor (다전극 산소 센서를 이용한 고분자 막의 산소 투과도 측정 장치 연구)

  • Jeong, Il-Son;Jung, Jae-Chil;Kim, Tai-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.229-234
    • /
    • 2012
  • The existing permeability measurements based on pressure differential between the polymer membrane that is permeable to measure the amount of oxygen used, but these methods must be kept in a vacuum, and the measurement of the membrane with low permeability in the membrane is too time consuming. In recent years by using electrochemical method polymer membrane currents caused by the amount of oxygen is a measure of how much is used. In this study, apparatus consisting of one anode and six cathodes for multi-oxygen permeability tester used the same number of membranes produced by electrochemical oxygen permeation characteristics. In this study, one silver/silver chloride anode electrochemical method with a hexagonal sensor to put various kinds of polymer membranes with the six oxygen permeability for simultaneous measurement in real-time systems. Six cathodes (Pt), and one of the coil-shaped anode (Ag/AgCl) to form a hexagonal one of the polarographic oxygen sensor in a single measurement system by six sensors. Each sensor for making hexagonal specificity of the sensor to compensate for the conditions obtained in a pure nitrogen gas and pure oxygen gas conditions. With this study, self-developed hexagonal sensor capable of measuring sensors and oxygen permeability tester, for a multi-six different oxygen permeability characteristics of the membrane measured at the same time.

Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3 (Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구)

  • Chang, Ik-Whang;Ji, Sang-Hoon;Paek, Jun-Yeol;Lee, Yoon-Ho;Park, Tae-Hyun;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.931-935
    • /
    • 2012
  • In this study, we fabricate and investigate low-temperature solid oxide fuel cells with a ceramic substrate/porous metal/ceramic/porous metal structure. To realize low-temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss. Yttrium-doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350-nm-thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1-${\mu}m$-thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200-nm-thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806 V, and the maximum power density is 11.9 mW/$cm^2$ at $350^{\circ}C$. Even though a fully dense electrolyte is deposited via PLD, a cross-sectional transmission electron microscopy (TEM) image reveals many voids and defects.

Inactivation of Legionella pneumophila by Electrochemical Disinfection (전기화학적 소독에 의한 Legionella pneumophila 불활성화)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.613-619
    • /
    • 2007
  • This study has carried out a performance of dimensionally stable anode for the purpose of disinfection of Legionella pneumophila in water. Three kinds of electrode were prepared by plating and thermal deposition, which were coated by the oxides of Pt, Ru and Ir on Ti metal surface, respectively. The order of disinfection performance for Legionella pneumophila was Ru/Ti > Ir/Ti > Pt/Ti. Free Cl and $ClO_2$ generation of Ir/Ti electrode was higher than that of two electrodes. However, the concentrations of generated $H_2O_2$ and $O_3$ of the Ru/Ti electrode were highest among the three electrodes. The higher NaCl concentration was, the more oxidants was generated and disinfection effect was increased. However, optimum NaCl dosage was 0.0125% due to the regulation on the conductivity and $Cl^-$ concentration for the cooling water quality of air conditioning and refrigeration equipment. With the increase of current, oxidants was more generated and following disinfection effect was increased. The increase of electrode distance reduced oxidants generation due to the low electric power, and their disinfection effect was decreased accordingly.

The effects of conductivity and CNT cathode on electricity generation in air-cathode microbial fuel cell (공기양극 미생물연료전지 시스템에서 전력발생특성에 미치는 전기전도도와 CNT 양극의 영향)

  • Yoo, Kyu-Seon;Park, Hyun-Soo;Song, Young-Chae;Woo, Jung-Hui;Lee, Chae-Young;Chung, Jae-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.355-360
    • /
    • 2012
  • The characteristics of power generation were investigated by changing the electrical conductivity from 10 to 40mS/cm using air-cathode microbial fuel cell, which had graphite fiber fabric(GFF) anode. There were three kinds of cathode used: one was carbon cloth cathode coated with Pt, another was carbon nanotube(CNT) cathode with non-precious catalyst of Fe-Cu-Mn, and the other was carbon nanotube(CNT) cathode without any catalyst. When it was operated in batch mode, power density of 1369.5mW/$m^2$ was achieved at conductivity of 20mS/cm. Power density from MFC with CNT cathode coated with multi-catalyst of Fe-Cu-Mn was shown about 985.55mW/$m^2$, which was 75.1% compared the power density of carbon cloth coated with Pt. This meant that CNT cathode coated with multi-catalyst of Fe-Cu-Mn could be an alternative of carbon cloth cathode.

Experimental Study on Electrical Discharge in Nanoscale Gaps (나노간극에 발생하는 전기방전의 실험적연구)

  • Lee, Young-Min;Choi, Hae-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.495-501
    • /
    • 2011
  • We present an experimental study of electrical discharge in nanoscale gaps. The discharge occurred between a cathode made of sharpened Pt-Ir wire and a gold-plated anode. Electric discharges were detected for electric potentials from 10 V to 80 V, and their gaps ranged from 50 nm to 800 nm. The spark signals indirectly showed spark phenomena such as discharges or shortages in the system. The sparks and discharges strongly depended on the electric potential (voltage) and the radius of the tips. For small gaps, the electrical discharge was random and strongly depended on the radius of the cathode tips.

Composite Membrane Containing a Proton Conductive Oxide for Direct Methanol Fuel Cell

  • Peck, Dong-Hyun;Cho, Sung-Yong;Kim, Sang-Kyung;Jung, Doo-Hwan;Kim, Jeong-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 2008
  • The composite membrane for direct methanol fuel cell (DMFC) was developed using $H_3O^+-{\beta}"-Al_2O_3$ powder and perfluorosulfonylfluroride copolymer (Nafion) resin. The perfluorosulfonylfluroride copolymer (Nafion) resin was mixed with $H_3O^+-{\beta}"-Al_2O_3$ powder and it was made to sheet form by hot pressing. The electrodes were prepared with 60 wt% PtRu/C and 60wt% Pt/C catalysts for anode and cathode, respectively. The morphology and the chemical composition of the composite membrane have been investigated by using SEM and EDXA, respectively. The composite membrane and $H_3O^+-{\beta}"-Al_2O_3$ were analyzed by using FT-IR and XRD. The methanol permeability of the composite membranes was also measured by gas chromatography (GC). The performance of the MEA containing the composite membrane (2wt% $H_3O^+-{\beta}"-Al_2O_3$) was higher than that of normal pure Nafion membrane at high operating temperature (e.g. $110^{\circ}C$), due to the homogenous distribution of $H_3O^+-{\beta}"-Al_2O_3$, which decreased the methanol permeability through the membrane and enhanced the water contents in the composite membrane.

Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells (GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성)

  • Park, Jaeho;Lee, Kyungju;Song, Sangwoo;Jo, Seulki;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF

Fabrication and Electrochemical Characterization of All Solid State Thin Film Micro-Battery by in-situ sputtering (In-situ 스퍼터링을 이용한 마이크로 박막 전지의 제작 및 전지 특성 평가)

  • 전은정;신영화;남상철;조원일;손봉희;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.159-162
    • /
    • 1999
  • All solid state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of Li/LiPON/V$_2$O$\sub$5/Pt. The vanadium oxide thin films were formed by d.c. reactive sputtering on Pt current collector. After deposition of vanadium oxide films, in-situ growths of lithium phosphorus oxynitride film were conducted by r.f. sputtering of Li$_3$PO$_4$ target in mixture gas of N$_2$ and O$_2$. The pure metal lithium film was deposited by thermal evaporation on thin film LiPON electrolyte. The cell capacity was about 45${\mu}$Ah/$\textrm{cm}^2$ $\mu\textrm{m}$ after 200 cycle. No appreciable degradation of the cell capacity could be observed after 50 cycles .

  • PDF