• Title/Summary/Keyword: Pt/$TiO_2$ Photocatalyst

Search Result 20, Processing Time 0.033 seconds

Production Conditions of the Photo-catalyst for Removing Indoor Pollutants (실내오염물질 제거용 광촉매의 제조조건에 따른 반응활성 연구)

  • Nam, Ki Bok;Park, In Chul;Hong, Sung Chang
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • This study was performed to study the photocatalyst for controlling the pollutant such as CO, C2H5OH and H2S by the UV light. This was shown in a catalyst having the same volume and the same surface area, that the structure in which the UV light to reach the interior structure exhibits more excellent activity. However, the activity of this activity of this photocatalyst removal of CO was very low. This problem can be solved by performing a reduction process by the addition of the precious metal series of Pt. Particularly, the amount of chemical species Pt0 incerased in the surface of Pt/TiO2 photocatalyst through the reduction process, which make the reaction activity of photocatalyst excellent to the removal of the CO.

The characteristics of Mn-TiO2 catalyst for visible-light photocatalyst (Mn-TiO2 촉매의 가시광촉매 특성)

  • Kim, Moon-Chan
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.493-502
    • /
    • 2011
  • The catalyst works for visible-light region was characterized. Toluene, xylene, MEK and ammonia were used as reactants. The decomposition efficiency was compared between visible-light photocatalyst and UV-light one. UV-photocatalyst can be activated with UV-light wave length of 280~360 nm. However, visible-light photocatalyst can be activated with visible wave length of 400~750 nm. This result was found by using UV-Vis absorbance. A lot of materials were doped to visible light photocatalyst in order to increase its performance. Platinum was added to visible light photocatalyst with manganese in order to increase performance of the visible light photocatalyst. MTMS (Methyl tri methoxy silane) was used as a binder. Contact angle was analyzed varying with amount of binder. Contact angle was increased with increasing the amount of MTMS. As a result, the hydrophilic property of photocatalyst with MTMS binder was decreased due to its hydrophobic one. And Mn-$TiO_2$ catalyst had an excellent anti-bacterial property.

Characteristics of CO Removal Process Using TiO2 Photocatalyst (TiO2 광촉매를 이용한 CO제거 공정특성)

  • Kim, Jin-Kil;Lee, Sang-Moon;Hong, Sung-Chang;Lee, Eui-Dong;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.116-120
    • /
    • 2013
  • Characteristics of photocatalytic CO removal process conducting CO conversion by using Pt loaded $TiO_2$ photocatalyst were investigated in a photocatalytic tubular reactor. Effects of Pt loading method onto $TiO_2$, linear velocity of gas stream containing CO gas, CO concentration and moisture content in the gas stream on the conversion of CO to $CO_2$ were examined. It was found that the CO gas could be removed almost 100% by using photocatalytic tubular reactor internally coated with Pt/$TiO_2$ photocatalyst under UV irradiation, when the linear velocity of gas stream was in the range of 0.01~0.25 m/s and CO concentration in the gas stream was ranged from 20 to 100 ppm and the relative humidity of the gas stream was in the range of 20~40%. The conversion of CO gas decreased gradually with increasing linear velocity of gas stream and CO concentration in the gas stream. The moisture in the gas stream could promote the removal of CO gas by means of the generation of OHradicals.

The photocatalytic water splitting into $H_2$ and $O_2$ mimicking a Z-scheme mechanism (광합성을 모사한 광촉매 물분해 수소 제조)

  • Jeon, Myung-Seok;Hong, Joon-Gi;Chun, Young-Gab;Choi, Ho-Suk
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.29-35
    • /
    • 2003
  • We studied the water splitting into $H_2$ and $O_2$ using two different semiconductor photo catalysts and redox mediator, mimicking the Z-scheme mechanism of the photosynthesis, $H_2$ evolution took place on a Pt-$SrTiO_2$ (Cr-Ta doped) photocatalyst using $I^-$ electron donor under the visible light irradiation. The Pt-$WO_3$ photocatalyst showed an excellent activity of the $O_2$ evolution using $IO_3^-$ electron acceptor under visible light. $H_2$ and $O_2$ gases evolved in the stoichiometric ratio($H_2/O_2$=2) under visible light using a mixture of the Pt-$WO_3$ and Pt-$SrTiO_3$ (Cr-Ta doped) suspended in NaI aqueous solution. We proposed a two-step photo-excitation mechanism using redox mediator under the visible irradiation.

The study of $Pt-TiO_{2}$ nanostructure electrode with UV for methanol oxidation (($Pt-TiO_{2}$ 나노구조에서의 UV에 의한 메탄올 산화반응연구)

  • Han, Sang-Beom;Song, You-Jung;Lee, Jong-Min;Park, Kyung-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.220-223
    • /
    • 2007
  • 이 논문은 DMFC와 태양전지의 하이브리드형 연료전지에 적합한 $TiO_{2}$구조에 대한 연구로서, DMFC에 사용되는 귀금속 Pt의 사용량을 줄이기 위해 Pt를 $TiO_{2}$광촉매 지지체에 함침 시켜 UV가 조사될 때 Pt의 활성을 극대화시키기 위한 연구이다. $TiO_{2}$는 Rutile결정 구조를 이루었으며, 반응 시간에 따라 나노막대 모양을 형성하였다. $NaBH_{4}$ 환원법을 통해 Pt를 함침 시켜 전극을 제조하였다. 이 전극들은 UV가 입사되지 않을 때보다 UV가 입사될 때 메탄올 산화성능이 주목할 만큼 향상되었다. 특히 긴 막대모양의 $TiO_{2}$에 백금이 잘 분산된 촉매의 메탄올 산화반응 성능이 크게 향상되었다. 이러한 $Pt/TiO_{2}$의 주목할 만한 성능 향상은 UV가 조사될 때 빛에 의해 생성된 $TiO_{2}$의 hole들에 의해 메탄올 산화반응이 향상된 것으로 사료된다.

  • PDF

Study of Degradation of Organic matter using prepared Titania by Metal ions substitution process (금속이온 치환법으로 제조된 티타니아를 이용한 유기물 분해에 대한 연구)

  • Lee, Gyu-Hwan;Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.19-22
    • /
    • 2008
  • In recent years, much attention has been paid to "Photocatalytic oxidation" as an alternative technique, where the pollutants are degraded by UV-irradiation in the presence of a semiconductor suspension such as titanium dioxide. $TiO_2$ is the most often used photocatalyst due to its considerable photocatalytic activity, high stability, non-environmental impact and low cost. 1n this research, the photocatalytic degradation of humic acid, acetaldehyde and methylene blue in $UV/TiO_2$ systems has been stydied. The effect of calcination temperature for manufacturing of $TiO_2$ photocatalysts and type of photocatalysts on photodegradation has been investigated. Photocatalysts with various metal ions(Mn, Fe, Cu and Pt) loading are tested to evaluate the effects of metal ions impurities on photodegradation. The photodegradation efficiency with $Pt-TiO_2$ or $Fe-TiO_2$ or $Cu-TiO_2$ is higher than Degussa P-25 powder. However, the photodegradation efficiency with $Mn-TiO_2$ is lower than Degussa P-25 powder. The photocatalytic properties of the nanocrystals were strongly dependent upon the crystallinity, particle size, standard reduction potential of various transition metal and electronegativity of various transition metal. As a result photocatalysts with various metal ion loading evaluated the effect of photodegradation.

  • PDF

Photocatalytic degradation of a polycyclic aromatic sulfur hydrocarbon ($TiO_2$를 이용한 다환 방향족 유기황 탄화수소의 광분해효율 연구)

  • Jo Seoung-Hye;Lee Sang-Geun;Lee Je-Geun;Kim Il-Gyu
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.163-166
    • /
    • 2005
  • [ $TiO_2$ ] 광촉매에 의한 분해 반응의 활성을 높이기 위한 다양한 연구가 진행되었다. 광촉매 반응은 1차 반응을 따랐으며 초기농도가 높을수록 분해효율이 감소하는 경향을 보였다. 본 연구에서는 산화제로 과산화수소가 주입되었을 경우 분해효율을 조사하였으며, 과산화수소를 주입하였을 경우가 그렇지 않은 경우보다 더 높은 분해효율을 보였다. 또한 과산화수소 주입량을 달리했을 때, 주입량이 증가할수록 효율이 높아지다가 일정량 이상에서는 오히려 효율이 감소하는 것으로 나타났다. 따라서 과산화수소 최적첨가량이 존재함을 알 수 있었다. 한편 $TiO_2$에 전이금속을 첨가하여 전이금속이 $TiO_2$ 촉매의 분해효율에 미치는 영향을 알아보았다. Pt(0.5%)-$TiO_2$가 가장 높은 분해효을을 보였으며, Pt첨가함량이 더 큰 Pt(2%)-$TiO_2$는 함량이 증가했음에도 불구하고 큰 차이는 아니지만 오히려 효율이 감소하였다. 따라서 촉매표면에서 전자와 정공이 생성되었을 때, Pt가 전자를 포획함으로써 전자와 정공의 재결합율을 감소시켜 OH라디칼을 생성할 수 있는 정공이 많아져 반응효율을 증가되는 것을 알 수 있었고, 금속에 따른 최적 첨가함량이 존재함을 알 수 있다. 반면에 Pd를 첨가했을 경우는 첨가 함량에 관계없이 모두 분해효율이 오히려 감소하는 경향을 나타냈으며 이는 전이금속 고유의 성질이나, 또는 대상물질에 따라 각기 다른 경향이 존재함을 나타내며 추가적인 연구가 필요하다고 사료된다.

  • PDF

Characteristics of MEK Degradation using TiO2 Photocatalyst in the Batch-type Reactor-Metal Doping Effect (회분식 반응기에서 TiO2 광촉매의 MEK 분해특성-금속담지영향)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1579-1584
    • /
    • 2015
  • In photocatalytic reaction, the doping of metal matter can alter the titania surface properties. As such the metal matter can increase the rate of the reaction. The influence of metal doping and calcination condition of $TiO_2$ photocatalyst was investigated at the batch-type photoreactor. Several metal matters were doped to the $TiO_2$ catalyst to improve photodegradation efficiency. During the experiments, water content was 3wt%, and reactor temperature was $40^{\circ}C$. Palladium-doped $TiO_2$ was found to be the best, where as platinum or tungsten-added also showed good results. Additional doping of platinum or tungsten on Pd/$TiO_2$ had no increase on the removal efficiency. To obtain proper calcination condition, various experiments about calcination temperature and time were carried out. As a result, the optimum calcination condition was temperature of $400^{\circ}C$, time of 1 hour.

The Performance of Photocatalyst filter for an Air Cleaner-Effect of novel metal (공기정화기용 광촉매 필터의 성능-귀금속 담지 영향)

  • Jang, Hyun-Tae;Kim, Jeong-Keun;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1284-1291
    • /
    • 2006
  • This work examined improving the activity of photocatalyts by novel metal doping for the degradation of volatile organic compounds, such as formaldehyde and acetone. The activity was determined with type of dopant novel metal and volatile organic compounds. The palladium-doped $TiO_2$ was found to be improved the decomposition of acetone. The photocatalytic degradation rate for acetone was increased with decreasing temperature to $45^{\circ}C$. The optmum temperature of photocatalytic degradation rate for formaldehyde was $75^{\circ}C$. The enhancement of reaction rate with novel metal were 1.0 wt.% of palladium for acetone, 1.0 wt.% of plaitnum for formaldehyde.

  • PDF

Synthesis of Visible-working Pt-C-TiO2 Photocatalyst for the Degradation of Dye Wastewater (염료폐수 분해를 위한 가시광 감응형 Pt-C-TiO2 광촉매의 합성)

  • Hahn, Mi Sun;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.123-128
    • /
    • 2005
  • Among various metal oxides semiconductors, $TiO_2$ is the most studied semiconductor for environmental clean-up applications due to its unique ability in photocatalyzing various organic contaminants, its chemical inertness, and nontoxicity. $TiO_2$, however, has a few drawbacks to be solved such as reactivity mainly working under ultraviolet irradiation (${\lambda}$ < 387 nm) and electron - hole recombination on $TiO_2$. In this study, to extend the absorption range of $TiO_2$ into the visible range and enhance electron - hole separation, we synthesized platinum (Pt) deposited $C-TiO_2$. The presence of Pt as an electron sink has been known to snhance the separation of photogenerated electron-hole pairs and induce the thermal decomposition. The characterization of as-synthesized $Pt-C-TiO_2$ was performed by Transmission Electron Microscopic (TEM), the Brunuer-Emmett-Teller (BET) method, X-ray Diffractometer (XRD), UV-vis spectrometer (UV-DRS), and X-ray Photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photodegradation experiment of an azo dye (Acid Red 44; $C_{10}H_7N=NC_{10}H_3(SO_3Na)_2OH$)was carried out by using an Xe arc lamp (300 W, Oriel). A 420 nm cut-off filter was used for visible light irradiation. From the results, Pt-deposited $C-TiO_2$ showed a far superior phothdegradation activity to Degussa P25, the commercial product under the irradiation of visible light and enhanced photocatalytic activity of visible-working $C-TiO_2$. This is a useful result into the application for the purification system of dye wastewater using visible energy of sun light.

  • PDF