DOI QR코드

DOI QR Code

Characteristics of CO Removal Process Using TiO2 Photocatalyst

TiO2 광촉매를 이용한 CO제거 공정특성

  • Kim, Jin-Kil (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Sang-Moon (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Hong, Sung-Chang (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Lee, Eui-Dong (HANA I&E) ;
  • Kang, Yong (Department of Chemical Engineering, Chungnam National University)
  • Received : 2012.07.10
  • Accepted : 2012.08.07
  • Published : 2013.02.01

Abstract

Characteristics of photocatalytic CO removal process conducting CO conversion by using Pt loaded $TiO_2$ photocatalyst were investigated in a photocatalytic tubular reactor. Effects of Pt loading method onto $TiO_2$, linear velocity of gas stream containing CO gas, CO concentration and moisture content in the gas stream on the conversion of CO to $CO_2$ were examined. It was found that the CO gas could be removed almost 100% by using photocatalytic tubular reactor internally coated with Pt/$TiO_2$ photocatalyst under UV irradiation, when the linear velocity of gas stream was in the range of 0.01~0.25 m/s and CO concentration in the gas stream was ranged from 20 to 100 ppm and the relative humidity of the gas stream was in the range of 20~40%. The conversion of CO gas decreased gradually with increasing linear velocity of gas stream and CO concentration in the gas stream. The moisture in the gas stream could promote the removal of CO gas by means of the generation of OHradicals.

관상의 광촉매 반응기에서 Pt가 담지된 $TiO_2$ 광촉매를 사용한 CO 전환 반응에 의해 CO를 제거하는 광촉매 공정에 대해 고찰하였다. $TiO_2$ 촉매에 Pt를 담지하는 방법, CO를 포함한 기체흐름속도, 기체흐름에 포함된 CO의 농도 그리고 기체의 수분함량이 CO를 $CO_2$로 전환하는 반응의 전환율에 미치는 영향을 검토하였다. Pt/$TiO_2$ 광촉매가 관의 내부에 코팅된 관상광촉매 반응기에서 진행된 실험결과 기체의 흐름속도 범위가 0.01~0.25 m/s, CO의 농도가 20~100 ppm 그리고 기체의 상대습도가 20~40%의 범위에서 CO는 UV의 조사 조건에서 거의 100% 정도 제거될 수 있었다. 기체흐름에 포함된 CO의 전환율은 기체의 흐름속도가 증가할수록 그리고 포함된 CO의 농도가 증가할수록 점점 감소하였다. 기체 흐름에 포함된 수분은 OH 라디칼을 형성함으로써 CO의 제거를 촉진할 수 있었다.

Keywords

References

  1. Poon, C. S. and Cheung, E., "NO Removal Dfficiency of Photocatalytic Paving Blocks Prepared with Recycled Materials," Constr. Build. Mater., 21, 1746-1753(2007). https://doi.org/10.1016/j.conbuildmat.2006.05.018
  2. Kwon, T. R., Roo, W. H., Lee, C. W. and Lee, W. M., "Industrial Chemistry,Catalysis/Reaction Engineering : Preparation of Wall Paper Coated with Modified $TiO_{2}$ and Their Photocatalytic Effects for Removal of NO in Air," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 43, 1-8(2005).
  3. Dibble, L. A. and Raupp, G. B., "Fluidized-bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Atreams," Environ, Sci. Tech., 26, 492-495(1992). https://doi.org/10.1021/es00027a006
  4. Hoffmann, A. J., Carraway, E. R. and Hofmann, M. R., "Photocatalytic Production of $H_{2}O_{2}$ and Organic Peroxides on Quantum- sized Semiconductor Colloids," Environ. Sci. Tech., 28, 776- 785(1994). https://doi.org/10.1021/es00054a006
  5. Kormann, C., Bahnemann, D. W. and Hofman, M. R., "Photolysis of Chloroform and Other Organic Molecules in Aqueous Titanium Dioxide Suspensions," Environ. Sci. Tech., 25, 494-500(1991). https://doi.org/10.1021/es00015a018
  6. Chen, D. and Ray, A. K., "Removal of Toxic Metal Ions from Wastewater by Semiconductor Photocatalysis," Chem. Eng. Sci., 56, 1561-1570(2001). https://doi.org/10.1016/S0009-2509(00)00383-3
  7. Arai, T., Horiguchi, M., Yanagida, M., Gunji, T., Sugihara, H. and Sayama, K., "Complete Oxidation of Acetaldehyde and Toluene over a Pd/$WO_{3}$ Photocatalyst Under Fluorescent- or Visible- light Irradiation," Chem. Commun., 43, 5565-5567(2008).
  8. Yang, C. C., Yu, H., Linden, B., Wu, J. C. S. and Mul, G., "Artificial Photosynthesis over Crystalline $TiO_{2}$-Based Catalysts: Fact or Fiction?," J. Am. Chem. Soc., 132, 8398-8406(2010). https://doi.org/10.1021/ja101318k
  9. Carbajo, M., Enciso, E. and Torralvo, M. J., "Synthesis and Charcaterization of Macro-meso Porous Titania," Colloids Surf. A., 293, 72-79(2007). https://doi.org/10.1016/j.colsurfa.2006.07.009
  10. Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L. and Chau, C. K., "Size Effects in Gas-phase Photo-oxidation of Trichloroethylene Using Nanometer-sized $TiO_{2}$ Catalysts," J. Catalysis, 192, 185-196(2000). https://doi.org/10.1006/jcat.2000.2838
  11. Ohno, T., Sarukawa, K., Tokieda, K. and Matsumura, M., "Morphology of a $TiO_{2}$ Photo Catalyst(Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases," J. Catalysis, 203, 82-86(2001). https://doi.org/10.1006/jcat.2001.3316
  12. Yang, J., Zhang, J., Zhu, L., Chen, S., Zhang, Y., Tang, Yi, Zhu, Y. and Li, Y., "Syntheses of Nano Titania Particles Embedded in Mesoporous SBA-15:Characterization and Photocatalytic Activity," J. Hazardous Matr., B 137, 952-958(2006). https://doi.org/10.1016/j.jhazmat.2006.03.017
  13. Kubo, W. and Tarsuma, T., "Photocatalytic Remote Oxidation With Various Photocatalysts and Enhancement of Its Activity," J. Mater. Chem., 30, 3104-3108(2005).
  14. Yang, J. H., Han, Y. S. and Choy, J. H., "$TiO_{2}$ Thin-films on Polymer Substrates and Their Photocatalytic Activity," Thin Solid Films, 495, 266-271(2006). https://doi.org/10.1016/j.tsf.2005.08.195
  15. Zhan, S., Chen, D., Jiao, X. and Tao, C., "Long $TiO_{2}$ Hollow Fibers with Mesoporous Walls : Sol-Gel Combined Electrospun Fabrication and Photocatalytic Properties," J. Phys. Chem. B, 110, 11199- 11204(2006). https://doi.org/10.1021/jp057372k
  16. Kozlova, E. A., Lyubina, T. P., Nasalevich, M. A., Vorontsov, A. V., Miller, A. V., Kaichev, V. V. and Parmon, V. N., "Influence of the Method of Platinum Deposition on Activity and Stability of Pt/$TiO_{2}$ Photocatalysts in the Photocatalytic Oxidation of Dimethyl Methylphosphonate," Catal. Commun., 12, 597-601(2011). https://doi.org/10.1016/j.catcom.2010.12.007
  17. Obee, T. N. and Brown, R. T., "$TiO_{2}$ Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene and 1,3- Butadiene," Environ, Sci. Tech., 29, 1223-1231(1995). https://doi.org/10.1021/es00005a013
  18. Ramaswamy, V., Awati, P. and Ramaswamy, A. V., "Epoxidation of Indene and Cyclooctene on Nano Crystalline Anatase Titania Catalyst," Top. Catal., 38, 251-259(2006). https://doi.org/10.1007/s11244-006-0023-8
  19. Chen, Y., Stathatos, E. and Dionysiou, D. D., "Microstructure Characterization and Photocatalytic Activity of Mesoporous $TiO_{2}$ Films with Ultrafine Anatase Nanocrystallites," Surf. Coat. Technol., 202, 1944-1950(2008). https://doi.org/10.1016/j.surfcoat.2007.08.041
  20. Bosc, F., Ayral, A. and Guizard, C., "Mesoporous Anatase Coatings for Coupling Membrane Separation and Photocatalyzed Reactions," Membrane Sci., 265, 13-19(2005). https://doi.org/10.1016/j.memsci.2005.04.039

Cited by

  1. 알칼리족 금속이 첨가된 LaCoO3 산화물에서 메틸 오렌지의 광촉매분해 반응 vol.55, pp.5, 2017, https://doi.org/10.9713/kcer.2017.55.5.718