• Title/Summary/Keyword: Pt(100)

Search Result 609, Processing Time 0.031 seconds

Investigation of Nanometals (Ni and Sn) in Platinum-Based Ternary Electrocatalysts for Ethanol Electro-oxidation in Membraneless Fuel Cells

  • Ponmani, K.;Kiruthika, S.;Muthukumaran, B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.95-105
    • /
    • 2015
  • In the present work, Carbon supported Pt100, Pt80Sn20, Pt80Ni20 and Pt80Sn10Ni10 electrocatalysts with different atomic ratios were prepared by ethylene glycol-reduction method to study the electro-oxidation of ethanol in membraneless fuel cell. The electrocatalysts were characterized in terms of structure, morphology and composition by using XRD, TEM and EDX techniques. Transmission electron microscopy measurements revealed a decrease in the mean particle size of the catalysts for the ternary compositions. The electrocatalytic activities of Pt100/C, Pt80Sn20/C, Pt80Ni20/C and Pt80Sn10Ni10/C catalysts for ethanol oxidation in an acid medium were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results showed that addition of Ni to Pt/C and Pt-Sn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials. The single membraneless ethanol fuel cell performances of the Pt80Sn10Ni10/C, Pt80Sn20/C and Pt80Ni20/C anode catalysts were evaluated at room temperature. Among the catalysts investigated, the power density obtained for Pt80Sn10Ni10/C (37.77 mW/cm2 ) catalyst was higher than that of Pt80Sn20/C (22.89 mW/cm2 ) and Pt80Ni20/C (16.77 mW/ cm2 ), using 1.0 M ethanol + 0.5 M H2SO4 as anode feed and 0.1 M sodium percarbonate + 0.5 M H2SO4 as cathode feed.

Effects of process temperature on the microstructure and magnetic properties of electrodeposited Co-Pt alloy thin films (전해도금 공정온도가 Co-Pt 합금 박막의 미세구조 및 자기적 특성에 미치는 영향)

  • Lee, C.H.;Jeong, G.H.;Park, J.K.;Lee, K.K.;Suh, S.J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.2
    • /
    • pp.87-90
    • /
    • 2008
  • Co-Pt alloy thin films were galvanostatically electrodeposited on Ru (30 nm)/Ta (5 nm)/Si (100) substrates from a amino-citrate based electrolyte. We used Ru(0002)-oriented buffer layers to control the crystallinity and orientation of the Co-Pt alloy thin films. The effect of solution temperature on the microstructure and magnetic properties of the Co-Pt alloy thin film was investigated. The samples were characterized by EDS, FESEM, XRD diffractometer using Cu $K{\alpha}$ radiation. The magnetic properties of these films were analyzed by a VSM and torque magnetometer. The Co-Pt alloy thin films were exhibited very high out-of-plane coercivity and squareness of the multilayer were 6527 Oe and 0.93, respectively, without heat treatment.

CO Gas-Sensor Based on Pt-Functionalized Mg-Doped ZnO Nanowires

  • Jin, Chang-Hyun;Park, Sung-Hoon;Kim, Hyun-Su;An, So-Yeon;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1993-1997
    • /
    • 2012
  • Mg-doped ZnO one-dimensional (1D) nanostrutures were synthesized by using a thermal evaporation technique. The morphology, crystal structure, and sensing properties of the Mg-doped ZnO nanostructures functionalized with Pt to CO gas at $100^{\circ}C$ were examined. The diameters of the 1D nanostructures ranged from 80 to 120 nm and that the lengths were up to a few tens of micrometers. The gas sensors fabricated from multiple networked Mg-doped ZnO nanowires functionalized with Pt showed enhanced electrical response to CO gas. The responses of the nanowires were improved by approximately 70, 69, 111, and 81 times at CO concentrations of 10, 25, 50, and 100 ppm, respectively. Both the response and recovery times of the nanowire sensor for CO gas sensing were not nearly changed by Pt functionalization. It also appeared that the Mg doping concentration did not influence the sensing properties of ZnO nanowires as strongly as Pt-functionalization. In addition, the mechanism for the enhancement in the CO gas sensing properties of Mg-doped ZnO nanowires by Pt functionalization is discussed.

Selective Catalytic Reduction of NO by H2 over Pt-MnOx/ZrO2-SiO2 Catalyst (Pt-MnOx/ZrO2-SiO2 촉매에서 수소에 의한 일산화질소의 선택적 촉매 환원반응)

  • Kim, Juyoung;Ha, Kwang;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.443-450
    • /
    • 2014
  • Selective catalytic reduction of nitrogen monoxide by hydrogen ($H_2$-SCR of NO) over platinum catalysts impregnated on zirconia-incorporated silica ($ZrO_2-SiO_2$) and manganese oxide ($MnO_x$) was investigated. $Pt-MnO_x$ catalyst showed low conversions and low yields of $N_2O$ and $NO_2$ at $100{\sim}350^{\circ}C$. On the other hand, NO conversions over $Pt/ZrO_2-SiO_2$ were very high, but $N_2O$ was predominantly produced at $100-150^{\circ}C$ and the yield of $NO_2$ increased with temperature at $200-300^{\circ}C$, resulting in poor $N_2$ yields. $Pt-MnO_x/ZrO_2-SiO_2$ exhibited a small enhancement in $N_2$ yield at $100-150^{\circ}C$ due to the synergy of $MnO_x$ and $ZrO_2-SiO_2$. The surface composition and oxidation state of the catalyst components and the acidity of the catalysts were examined. IR spectra of the adsorption of NO and their subsequent reactions with hydrogen on these catalysts were also recorded. The variations of conversion and product yield according to the catalyst components in the $H_2$-SCR of NO were discussed in relation to their catalytic roles.

Microstructure and Magneto-Optical Properties of MnSbX(X=PT,Ag) Alloy Films (MnSbX(X=Pt, Ag) 합금막의 미세구조 및 자기광학적 특성)

  • 송민석;이한춘;김택기;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.156-160
    • /
    • 1998
  • Crystal structures and magneto-optical properties of $(Mn_{0.5-Z}Sb_{0.5+Z})_{100-y}Pt_y$ (0$(Mn_{0.5-Z}Sb_{0.5+Z})_{100-y}Ag_y$ (0$^{\circ}C$ are C1b-type with fcc and NiAs-type with hcp, respectively. The MnSbAg films have a texture which the c-axis orientation is perpendicular to the film plane by annealing at 300 $^{\circ}C$ for less than 3 hours. The perpendicular anisotropy constants of the $Mn_{47.4}Sb_{47.5}Ag_{5.1}$ film annealed at 300 $^{\circ}C$ for 3 hours are $K_1=6.6{\times}10^5 \; erg/cm^3\;and\;K_2=1.9{\times}10^5\; erg/cm^3$. The Kerr rotation angle of MnSbPt films increases but that of MnSbAg film decreases by decreasing incident wavelength within the range of 700$\leq$ λ$\leq$1000 nm. High polar Kerr angles of 1.7$^{\circ}$ (λ =700 nm) and 0.6$^{\circ}$ (λ =1000 nm), 0.2$^{\circ}$ (λ =700 nm) and 0.97$^{\circ}$ (λ =1000 nm) have been obtained from $Mn_{41.1}Sb_{44,9}Pt_{14.0}$ and $Mn_{47.4}Sb_{47.5}Ag_{5.1}$ alloy films, respectively.

  • PDF

Various Temperatures Affecting Characteristics of Pt/C Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells (Polymer Electrolyte Membrane Fuel Cells용 Pt/C 캐소드 전극촉매 특성에 미치는 반응 온도)

  • Yoo, Sung-Yeol;Kang, Suk-Min;Lee, Jin-A;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.180-185
    • /
    • 2011
  • This study is aimed to increase the activity of cathodic catalysts for PEMFCs(Polymer Electrolyte Membrane Fuel Cells). we investigated the temperature effect of 20wt% Pt/C catalysts at five different temperatures. The catalysts were synthesized by using chemical reduction method. Before adding the formaldehyde as reducing agent, process was undergone for 2 hours at the room temperature (RT), $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, respectively. The performances of synthesize catalysts are compared. The electrochemical oxygen reduction reaction (ORR) was studied on 20wt% Pt/C catalysts by using a glassy carbon electrode through cyclic voltammetric curves (CV) in a 1M H2SO4 solution. The ORR specific activities of 20wt% Pt/C catalysts increased to give a relative ORR catalytic activity ordering of $80^{\circ}C$ > $100^{\circ}C$ > $60^{\circ}C$ > $40^{\circ}C$ > RT. Electrochemical active surface area (EAS) was calculated with cyclic voltammetry analysis. Prepared Pt/C (at $80^{\circ}C$, $100^{\circ}C$) catalysts has higher ESA than other catalysts. Physical characterization was made by using X-ray diffraction (XRD) and transmission electron microscope (TEM). The TEM images of the carbon supported platinum electrocatalysts ($80^{\circ}C$, $100^{\circ}C$) showed homogenous particle distribution with particle size of about 2~3.5 nm. We found that a higher reaction temperature resulted in more uniform particle distribution than lower reaction temperature and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.

An Oxyfluorination Effect of Carbon Nanotubes Supports on Electrochemical Behaviors of Platinum Nanoparticle Electrodes (백금 나노입자전극의 전기화학적 거동에 대한 카본나노튜브 지지체의 산소-불소 처리효과)

  • Kim, Seok;Lee, Jae-Rock;Park, Soo-Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.118-123
    • /
    • 2008
  • In the present study, the effect of oxyfluorination treatment on multi-walled nanotubes (MWNTs) supports was investigated by analyzing surface functional groups. The surface characteristics were determined by Fourier transformed-infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). After the deposition of platinum nanoparticles on the above treated carbon supports, a crystalline size and a loading level had been investigated. Electrochemical properties of the treated MWNTs-supported Pt (Pt/MWNTs) catalysts were analyzed by current-voltage curve measurements. From the results of surface analysis, an oxygen and fluorine-containing functional group had been introduced to the surface of carbon supports. The oxygen and fluorine contents were the highest value at the treatment of 100 temperature. The Pt/100-MWNTs showed the smallest particle crystalline size of 3.5 nm and the highest loading level of 9.4% at the treatment of 100 temperature. However, the sample treated at the higher temperature showed the larger crystalline size and the lower loading level. This indicated that the crystalline size and the loading level could be controlled by changing the temperature of oxyfluorination treatment. Accordingly, an electrochemical activity was enhanced by increasing the temperature of treatment upto 100, and then decreased in the case of 200 and 300. The highest specific current density of 120 mA/mg had been obtained in the case of Pt/100-MWNTs.

Investigation on the Vibrating Wire Strain Gauges for the Evaluation of Pipeline Safety in Extreme Cold Region (극한지 파이프라인 안정성 평가를 위한 진동현식 변형률 게이지 연구)

  • Kim, Hak Joon
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.583-591
    • /
    • 2016
  • Vibrating wire (VW) strain gauges are widely used for the evaluation of pipeline safety in extreme cold region. The development of VW strain gauges for the low temperature environment is necessary because of the high cost of gauges sold in developed countries. Thermistors embedded in the regular VW strain gauges and PT 100 sensors embedded in the gauges specially manufactured for this study have gone through credibility tests for temperature measurements. The use of PT 100 is recommended at low temperature environments because thermistors have low credibility at temperatures below $-15^{\circ}C$. Strain measurements using regular VW strain gauges also show low accuracies as temperature goes down. VW strain gauges manufactured using inconel give high credibility of strain measurements at low temperatures. More reliable VW strain gauges for the low temperature environment will be developed in the near future.