Effects of process temperature on the microstructure and magnetic properties of electrodeposited Co-Pt alloy thin films

전해도금 공정온도가 Co-Pt 합금 박막의 미세구조 및 자기적 특성에 미치는 영향

  • Lee, C.H. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Jeong, G.H. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Park, J.K. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Lee, K.K. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Suh, S.J. (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 이창형 (성균관대학교 신소재공학과) ;
  • 정근희 (성균관대학교 신소재공학과) ;
  • 박정갑 (성균관대학교 신소재공학과) ;
  • 이광근 (성균관대학교 신소재공학과) ;
  • 서수정 (성균관대학교 신소재공학과)
  • Published : 2008.04.30

Abstract

Co-Pt alloy thin films were galvanostatically electrodeposited on Ru (30 nm)/Ta (5 nm)/Si (100) substrates from a amino-citrate based electrolyte. We used Ru(0002)-oriented buffer layers to control the crystallinity and orientation of the Co-Pt alloy thin films. The effect of solution temperature on the microstructure and magnetic properties of the Co-Pt alloy thin film was investigated. The samples were characterized by EDS, FESEM, XRD diffractometer using Cu $K{\alpha}$ radiation. The magnetic properties of these films were analyzed by a VSM and torque magnetometer. The Co-Pt alloy thin films were exhibited very high out-of-plane coercivity and squareness of the multilayer were 6527 Oe and 0.93, respectively, without heat treatment.

Co-Pt 합금 박막은 amino-citrate 기반의 전해액에서 Ru(30 nm)/Ta(5 nm)/Si(100)구조의 작업 전극을 사용하여 정전류 전해도금 방법으로 증착 하였다. (0002) 우선 성장된 Ru의 buffer layers를 사용하여 Co-Pt 합금 박막의 결정구조와 우선 성장을 조절하였다. 본 실험에서는 도금액 온도를 변화시킴에 따른 Co-Pt 합금 박막의 자기적 성질과 미세구조에 미치는 영향을 고찰하였다. Co-Pt 합금 박막의 형상과 조성은 FESEM 과 EDS로 확인하였고, XRD로 결정구조를 분석하였다. 자기적 성질은 진동 시료 자력계와 토오크 자력계로 분석하였다. Co-Pt 합금 박막은 박막표면과 수직한 방향에서 열처리 없이 각각 6527 Oe의 높은 보자력과 0.93의 높은 각형비를 나타내었다.

Keywords

References

  1. R.L. White, R.M.H. New and R.F.W. Pease, "Patterned media: A viable route to 50 Gbit/in and up for magnetic recording?", IEEE Trans. Magn. 33 (1997) 990 https://doi.org/10.1109/20.560144
  2. R. Skomski and J.M.D. Coey, "Permanent magnetism", Bristol U.K., Institute Physics (1999) ch. 5
  3. H.S. Nalwa, "Magnetic nanostructures", American Scientific Publisher (2002) 68
  4. Y. Yamada, T. Suzuki and E. Noel Abarra, "Magnetic properties of electron beam evaporated CoPt alloy thin films", IEEE Trans. Magn. 34 (1998) 343 https://doi.org/10.1109/20.667759
  5. Y. Yamada, T. Suzuki and E.N. Abarra, "Magnetic properties of electron beam evaporated CoPt alloy thin films", IEEE Trans. Magn. 33 (1997) 3622 https://doi.org/10.1109/20.619517
  6. Y. Yamada, T. Suzuki, G.L. Lauhoff and H. Kanazawa, "The origin of large perpendicular magnetic anisotropy observed in Co3Pt alloy thin films", IEEE Trans. Magn. 35 (1999) 2988 https://doi.org/10.1109/20.801056
  7. G. Zangari, P. Bucher, N. Lecis, P.L. Cavallotti, L. Callegaro and E. Puppin, "Magnetic properties of electroplated Co-Pt films", J. Magn. Magn. Mater. 157-158 (1996) 256 https://doi.org/10.1016/0304-8853(95)01099-8
  8. I. Zana and G. Zangari, "Magnetic properties of electrodeposited Co-Pt thin films with very high perpendicular magnetic anisotropy", J. Magn. Magn. Mater. 272- 276 (2004) 1698 https://doi.org/10.1016/j.jmmm.2003.12.262