• Title/Summary/Keyword: Psychoacoustic model II

Search Result 8, Processing Time 0.025 seconds

Audio Forensic Marking using Psychoacoustic Model II and MDCT (심리음향 모델 II와 MDCT를 이용한 오디오 포렌식 마킹)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper, the forensic marking algorithm is proposed using psychoacoustic model II and MDCT for high-quality audio. The proposed forensic marking method, that inserts the user fingerprinting code of the audio content into the selected sub-band, in which audio signal energy is lower than the spectrum masking level. In the range of the one frame which has 2,048 samples for FFT of original audio signal, the audio forensic marking is processed in 3 sub-bands. According to the average attack of the fingerprinting codes, one frame's SNR is measured on 100% trace ratio of the collusion codes. When the lower strength 0.1 of the inserted fingerprinting code, SNR is 38.44dB. And in case, the added strength 0.5 of white gaussian noise, SNR is 19.09dB. As a result, it confirms that the proposed audio forensic marking algorithm is maintained the marking robustness of the fingerprinting code and the audio high-quality.

Fixed-point Processing Optimization of MPEG Psychoacoustic Model-II Algorithm for ASIC Implementation (MPEG 심리음향 모델-ll 알고리듬의 ASIC 구현을 위한 고정 소수점 연산 최적화)

  • Lee Keun-Sup;Park Young-Cheol;Youn Dae Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1491-1497
    • /
    • 2004
  • The psychoacoustic model in MPEG audio layer-III (MP3) encoder is optimized for the fixed-point processing. The optimization process consists of determining the data word length of arithmetic unit and the algorithm for transcendental functions that are often used in the psychoacoustic model. In order to determine the data word length, we defined a statistical model expressing the relation between the fixed-point operation errors of the psychoacoustic model and the probability of alteration of the allocated bits doe to these errors. Based on the simulations using this model, we chose a 24-bit data path and constructed a 24-bit fixed-point MP3 encoder. Sound quality tests using the constructed fixed-point encoder showed a mean degradation of -0.2 on ITU-R 5-point audio impairment scale.

Effect of Fabric Sound of Vapor Permeable Water Repellent Fabrics for Sportswear on Psychoacoustic Properties (스포츠웨어용 투습발수직물 소리가 심리음향학적 특성에 미치는 영향)

  • Lee, Jee-Hyun;Lee, Kyu-Lin;Jin, Eun-Jung;Yang, Yoon-Jung;Cho, Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2012
  • The objectives of this study were to investigate the psychoacoustic properties of PTFE(Poly tetra Fluoroethylene) laminated vapor permeable water repellent fabrics which are frequently used for sportswear, to examine the relationship among fabrics' basic characteristics, mechanical properties and the psychoacoustic properties, and finally to propose the predicting model to minimize the psychoacoustic fabric sound. A total of 8 specimens' frictional sound were recorded and Zwicker's psychoacoustic parameters such as loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) were calculated using the Sound Quality Program. Mechanical properties of specimens were measured by KES-FB system. Loudness(Z) of specimen D-1 was the highest, which means the rustling sound of the specimen D-1 was the most noisy. Statistically significant difference among film type was observed only in loudness(Z) for fabric sound. Based on ANOVA and post-hoc test, specimens were classified into less loud PTFE film group (groupI) and loud PTFE film group (groupII). Loudness(Z) was higher when staple yarn was used compared when filament yarn was used. According to the correlation between the mechanical properties of fabrics and loudness(Z) in groupI, the shear properties, compression properties and weight showed positive correlation with loudness(Z). According to the regression equation predicting loudness(Z) of groupI, the layer variable was chosen. In groupII, variables explaining the loudness(Z) were yarn types and shear hysteresis(2HG5).

  • PDF

An Optimization on the Psychoacoustic Model for MPEG-2 AAC Encoder (MPEG-2 AAC Encoder의 심리음향 모델 최적화)

  • Park, Jong-Tae;Moon, Kyu-Sung;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.2
    • /
    • pp.33-41
    • /
    • 2001
  • Currently, the compression is one of the most important technology in multimedia society. Audio files arc rapidly propagated throughout internet Among them, the most famous one is MP-3(MPEC-1 Laver3) which can obtain CD tone from 128Kbps, but tone quality is abruptly down below 64Kbps. MPEC-II AAC(Advanccd Audio Coding) is not compatible with MPEG 1, but it has high compression of 1.4 times than MP 3, has max. 7.1 and 96KHz sampling rate. In this paper, we propose an algorithm that decreased the capacity of AAC encoding computation but increased the processing speed by optimizing psychoacoustic model which has enormous amount of computation in MPEG 2 AAC encoder. The optimized psychoacoustic model algorithm was implemented by C++ language. The experiment shows that the psychoacoustic model carries out FFT(Fast Fourier Transform) computation of 3048 point with 44.1 KHz sampling rate for SMR(Signal to Masking Ratio), and each entropy value is inputted to the subband filters for the control of encoder block. The proposed psychoacoustic model is operated with high speed because of optimization of unpredictable value. Also, when we transform unpredictable value into a tonality index, the speed of operation process is increased by a tonality index optimized in high frequency range.

  • PDF

IMPLEMENTATION OF MPEG-II AUDIO ENCODER USING ADSP-21020 (ADSP-21020을 이용한 MPEG-II 오디오 인코더의 구현)

  • Kim, Jae-Young;Lee, Byung-Chul;Lee, Key-Seo;Chung, Chin-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.977-979
    • /
    • 1995
  • MPEG-II is the international standard of compression for digital image and digital audio that is the most important in the multimedia environment. Now many researchers are developing relevant systems. MPEG-II consists of video, audio, system and the other part. In this paper, we have designed and demonstrated two channel audio encoder system that processes the audio compression part, and excutes layer II for complexity and psychoacoustic model II, with ADSP-21020 of Analog Device.

  • PDF

Tonality Detection based on Spectrum Energy in Perceptual Audio Coder (지각 오디오 부호화기에서의 스펙트럼 에너지 기반 톤 성분 검출 알고리듬)

  • 이근섭;연규철;박영철;윤대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.770-776
    • /
    • 2004
  • The goal of perceptual audio coder is to reduce redundancy and irrelevancy of audio signal based on the concept of masking. Several studies on masking effect reveal that the masking threshold varies as a function of the noise-like or tone-like nature of audio signals. Therefore, tonality of audio signal influences significantly the quality and efficiency of perceptual audio coder In this paper, we propose a new effective algorithm for tonality measure using spectrum energy. Since the proposed algorithm consists of a few transcendental functions and simple operations, it has lower complexity than MPEG psychoacoustic model-II. The proposed algorithm was tested with some audio signals, and DSP implementation showed that the proposed algorithm could be implemented with 3 MIPS. These results illustrate the efficiency of proposed algorithm in both performance and complexity.

Enhanced Pre echo Control Algorithm for MPEG Audio Coders (MPEG 오디오 부호화기를 위한 향상된 프리 에코 컨트롤 알고리듬)

  • Lee Chang-Joon;Lee Jae-Seong;Park Young-Cheol
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2 s.31
    • /
    • pp.191-199
    • /
    • 2006
  • This paper presents an efficient pre echo control scheme for MPEG Audio coders based on the psychoacoustic model II (PAM-II). Pre echo control is the final step for the calculation of masking threshold in the PAM II. It is to minimize the spread of quantization error over the processing frame. In the conventional encoders, pre echo is reduced by restricting the estimated masking threshold not to exceed the one obtained in the previous frame. The conventional method performs pre echo control not only for short blocks but also for long blocks, which lowers the masking threshold in long blocks and, in turn, increases the quantization noise level of corresponding blocks. This paper proposes an efficient pre echo control process. The test result shows a mean enhancement of more than 0.4 especially for complex signals on the ITU R 5 point audio impairment scale.

The Implementation of Multi-Channel Audio Codec for Real-Time operation (실시간 처리를 위한 멀티채널 오디오 코덱의 구현)

  • Hong, Jin-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.91-97
    • /
    • 1995
  • This paper describes the implementation of a multi-channel audio codec for HETV. This codec has the features of the 3/2-stereo plus low frequency enhancement, downward compatibility with the smaller number of channels, backward compatibility with the existing 2/0-stereo system(MPEG-1 audio), and multilingual capability. The encoder of this codec consists of 6-channel analog audio input part with the sampling rate of 48 kHz, 4-channel digital audio input part and three TMS320C40 /DSPs. The encoder implements multi-channel audio compression using a human perceptual psychoacoustic model, and has the bit rate reduction to 384 kbit/s without impairment of subjective quality. The decoder consists of 6-channel analog audio output part, 4-channel digital audio output part, and two TMS320C40 DSPs for a decoding procedure. The decoder analyzes the bit stream received with bit rate of 384 kbit/s from the encoder and reproduces the multi-channel audio signals for analog and digital outputs. The multi-processing of this audio codec using multiple DSPs is ensured by high speed transfer of date between DSPs through coordinating communication port activities with DMA coprocessors. Finally, some technical considerations are suggested to realize the problem of real-time operation, which are found out through the implementation of this codec using the MPEG-2 layer II sudio coding algorithm and the use of the hardware architecture with commercial multiple DSPs.

  • PDF