• Title/Summary/Keyword: Pseudomonas sp. P2

Search Result 263, Processing Time 0.029 seconds

Sequence Characteristics of xylJQK Genes Responsible for Catechol Degradation in Benzoate-Catabolizing Pseudomonas sp. S-47

  • Park, Dong-Woo;Lee, Jun-Hun;Lee, Dong-Hun;Lee, Kyoung;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.700-705
    • /
    • 2003
  • Pseudomonas sp. S-47 is capable of degrading benzoate and 4-chlorobenzoate as well as catechol and 4-chlorocatechol via the meta-cleavage pathway. The three enzymes of 2-oxopenta-4-enoate hydratase (OEH), acetaldehyde dehydrogenase (acylating) (ADA), and 2-oxo-4-hydroxypentonate aldolase (HOA) encoded by xylJQK genes are responsible for the three steps after the meta-cleavage of catechol. The nucleotide sequence of the xylJQK genes located in the chromosomal DNA was cloned and analyzed. GC content of xylJ, xylQ, and xylK was 65% and consisted of 786, 924, and 1,041 nucleotides, respectively. The deduced amino acid sequences of xylJ, xylQ, and xylK genes from Pseudomonas sp. S-47 showed 93%, 99%, and 99% identity, compared with those of nahT, nahH, and nahI in Pseudomonas stutzeri An10. However, there were only about 53% to 85% identity with xylJQK of Pseudomonas putida mt-2, dmpEFG of P. putida CF600, aphEFG of Comamonas testosteroni TA441, and ipbEGF of P. putida RE204. On the other hand, the xylLTEGF genes located upstream of xylJQK in the strain S-47 showed high homology with those of TOL plasmid from Pseudomonas putida mt-2. These findings suggested that the xylLTEGFIJQK of Pseudomonas sp. S-47 responsible for complete degradation of benzoate and then catechol via the meta-pathway were phylogenetically recombinated from the genes of Pseudomonas putida mt-2 and Pseudomonas stutzeri An10.

Characteristics of MCPA plasmid isolated from Pseudomonas sp.

  • Park, Young-Doo;Eum, Jin-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1091-1094
    • /
    • 2009
  • In order to find the characteristics of selected powerful Pseudomoanas sp. KU171(pKU19) degrading MCPA, many physiological and genetic tests were accomplished. By the curing and transformation experiment, it was found that the genes of Pseudomonas sp.KU171(pKU19) for MCPA-degrading were located on a plasmid pKU19. Also the plasmid had degradative gens for 2,A-D, 3CB, and DCP. Molecular size of pKU19 was measured to be 31.2Kb.

  • PDF

Phosphate Solubilizing Activity of Pseudomonas sp. CL-1 and Kluyvera sp. CL-2 (Pseudomonas sp. CL-1 및 Kluyvera sp. CL-2 균주의 인산가용화 특성)

  • Kwon, Jang-Sik;Suh, Jang-Sun;Weon, Hang-Yeon;Kim, Wan-Gyu;Noh, Hyung-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.442-446
    • /
    • 2007
  • From the rhizoplane and rhizosphere of pepper, tomato, lettuce, pasture, and grass, unsoluble inorganic phosphate solubilizing bacterial strains were isolated using plate base assay on Pikovskaya's medium. Two strains, CL-1 and CL-2, which produced largest halo on plates (indicative of phosphate solubilization)were selected for further studies. Based on these biochemical and 16S rRNA analysis strains CL-1, CL-2 were found to be as species of Pseudomonas sp. and Kluyvera sp., respectively. In broth assay Pseudomonas sp. CL-1 and Kluyvera sp. CL-2 solubilized insoluble phosphate by 193.4 mg and $493.6P\;mg\;L^{-1}$, respectively after $3^{rd}$ day inoculation. These effecient phosphate solubilizing bacteria have a potential to be developed as microbial based fertilizer in future.

Purification and Characterization of Chitinase from Antagonistic Bacteria Pseudomonas sp. 3098. (생물방제균 Pseudomonas sp. 3098이 생산하는 Chitinase의 정제 및 특성)

  • 이종태;김동환;도재호;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.515-522
    • /
    • 1998
  • Plant root rotting fungi, Fusarium solani are suppressed their growth by the chitinase which is produced from the antagonistic soil bacteria. The chitinase producable antagonistic bacterium Pseudomonas sp. 3098 was selected as a powerful biocontrol agent of F. solani from ginseng rhizosphere. The antagonistic Pseudomonas sp. 3098 was able to produce a large amount of extracellular chitinase which is key enzyme in the decomposition of fusarial hypal walls. The chitinase was purified from cultural filtrate of Pseudomonas sp. 3098 by the procedure of ammonium sulfate precipitation, anion exchange chromatography, gel filtration on Bio-Gel P-100, and 1st and 2nd hydroxyapatite chromatography. The molecular mass of the purified enzyme was ca. 45 kDa on SDS-FAGE. The optimal pH and temperature for the activity of purified chitinase were 5.0 and 45$^{\circ}C$, respectively. The enzyme was stable in pH range of 5.0 to 9.0 up to 5$0^{\circ}C$ The enzyme was significantly inhibited by metal compounds such as FeCl$_2$, AgNO$_3$ and HgCl$_2$, and was slightly inhibited by p-CMB, iodoacetic acid, urea, 2,4-DNP and EDTA. The enzyme had ability of digestion on colloidal chitin and chitin from shrimp shell, but could not digest chitosan and chitin from crab shell. Km value of the enzyme was 0.11% on colloidal chitin, and the maximum hydrolysis rate of the enzyme was 34% on colloidal chitin.

  • PDF

Isolation of Keratinolytic Protease Producing Microorganism and Its Cultivation Condition (Keratinolytic protease 생산균, Pseudomonas sp. KP-364의 분리 및 배양)

  • 전동호;권태종
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.134-141
    • /
    • 2001
  • A bacterial strain KP-364 producing extracellular keratinolytic protease was isolated from the soil of the poultry fac-tory. It was identified as Pseudomonas sp. based on its morphological and physiological characteristics, The optimal culture conditions for the production of keratinolytic protease by Pseudomonas sp. KP-364 were investigated. The composition of optimal medium for the keratinolytic protease was 2.0% glucose, 0.5% soybean meal. 0.5% $NaNO_3$ and 0.2% KCI Optimal initial pH for production of Keratinolytic protease production were 6.5 and $37^{\circ}C$ respec- tively. The keratinolytic protease production reached a maximum of 1,270 U/ml/hr after 48 hours cultivation under the optimal culture conditions.

  • PDF

Isolation and Characterization of Diesel Oil Degrading Bacterium, Pseudomonas sp. GENECO 1 Isolated from Oil Contaminated Soil (유류 오염 토양으로부터 분리한 디젤 분해 세균 Pseudomonas sp. GENECO 1의 분리 및 특성 규명)

  • 이종광;김무훈;박형수
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.102-107
    • /
    • 2003
  • With the enrichment culture technique, bacterial strains which degrade diesel oil were isolated from soil contaminated with diesel oil. One of the isolates named GENECO 1 showed the highest activity for emulsification of diesel oil as well as the highest growth rate. This strain, GENECO 1, was identified as a Pseudomonas sp. based on its biochemical, physiological characteristics and 16S rDNA sequences. The optimal cultural conditions for cell growth and oil emulsifying activity of its culture were as follow; $30^{\circ}C$ for temperature, 7.0 for pH. Diesel oil degradation was analysed by the gas chromatography. More than 95% of 1% treated diesel oil were converted into a form no longer extractable by mixed organic solvents after 96 hours incubation.

Cloning and Nucleotide Sequence Analysis of xylC Gene Encoding 5C-2HMS Dehydrogenase from Pseudomonas sp. S-47. (Pseudomonas sp. S-47로부터 5-Chloro-2-Hydroxymuconic Semialdehyde Dehydrogenase를 암호화하는 xylG 유전자의 클로닝 및 염기서열 분석)

  • Park, Song-Yi;Lee, Dong-Hoon;Kim, Young-Soo;Lee, Kyung;Kim, Chi-Kyung
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • Pseudomonas sp. S-47 is capable of degrading 4-chlorobenzoate to produce 5-chloro-2-hydroxymuconic semialdehyde (5C-2HMS) by the enzymes encoding by xylXYZLTE cluster. In this study, the resulting 5C-2HMS was confirmed to be transformed to 5-chloro-2-hydroxymuconic acid (5C-2HMA) by 5C-2HMS dehydrogenase. The xylG gene encoding 5C-2HMS dehydrogenase was cloned from the chromosomal DNA of strain S-47. The nucleotide sequence of xylG showed to be composed of 1,600 base pairs with ATG initiation and TGA termination codons. A deduced amino acid sequence of the 5C-2HMS dehydrogenase (XylG) exhibited 98%, 93%, and 89% identity with those of the dehydrogenases from P. putida mt-2, P. putida G7, and Pseudomonas sp. CF600, respectively.

Isolation of pseudomonas sp. S-47 and its degradation of 4-chlorobenzoic acid

  • Seo, Dong-In;Lim, Jai-Yun;Kim, Young-Chang;Min, Kyung-Hee;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.188-192
    • /
    • 1997
  • The strain of S-47 degrading 4-chlorobenzoic acid (4CBA) was isolated from Ulsan chemical industrial complex by enrichment cultivation with 1 mM 4CBA. The strain was Gram-negative rod and grew optimally at 30.deg.C and pH 7 under aerobic condition, so that the organism was identified as a species of Pseudomonas. Pseudomonas sp. S-47 degraded 4-chlorobenzoic acid to produce a yellow-colored meta-cleavage product, which was confirmed to be 5-chloro-2-hydroxymuconic semialdehyde (5C-2HMS) by UV-visible spectrophotometry. 5C-3HMS was proved trometry. This means that Pseudomonas sp. S-47 degraded 4CBA via 4-chlorocatechol to 5C-2HMS by meta-cleavage reaction and then to 5C-2HMA by 5C-2HMS dehydrogenase.

  • PDF

Characteristics of Extracellular Endo-Inulinase Produced by Pseudomonas sp. (Pseudomonas sp.의 균체외 Endo-Inulinase 특성)

  • 이태경;신현철;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.484-488
    • /
    • 1988
  • Two forms of extracellular endo-inulinase, designated as PIand P II were resolved from a species of Pseudomonas isolated from soil. Both enzymes were glycoproteins with their carbohydrate content of 15% for PIand 2.4% for P II inulinase. Tryptophan residue was proved to be an essential amino acid for their catalytic activity. The molecular weights of PIand P II were estimated to be 210, 000 and 170, 000, respectively. The activity of the two enzymes was strongly inhibited by p-chloromercuribenzoate but the inhibition was nearly completely offset by the addition of the reducing agents such as cysteine or dithiothreitol. On the other hand, the two enzymes were activated about 50-60% of their activities by the presence of Co$^{+2}$ ion, and quite stable at pH values ranging from pH 4.0 to 1.5. They also appeared to be relatively thermostable, and no appreciable inactivation was observed after incubation at 55$^{\circ}C$ for 2 hours. About 70 % hydrolysis rate with PIand 56 % with P II were achieved when inulin was hydrolyzed at 5$0^{\circ}C$ for 12 hours with 60 units of the enzymes in 2 % inulin solution.

  • PDF

Cloning of C-P Compound Biodegrading Genes in Pseudomonas sp. strain #A1 (Pseudomonas sp. strain #A1에서 C-P 화합물 분해 유전자의 Cloning)

  • Lee, Ki-Sung;Cho, Hong-Bum;Kim, Soo-Ki
    • The Journal of Natural Sciences
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1999
  • C-P compounds(Pn; phosphonate) such as glyphosate(GPS), aminoethylphosphonate(AEPn) and methyl-phosphonate(MPn) biodegrading genes were cloned from Pseudomonas sp. strain #A1 Which assimilated GPS as sole phosphorous source. Carrying out the in vivo molecular cloning by means of Mini-Mu plasmid, the size of clones($AEPn^+$, $MPn^+$, $GPS^+$) for the gene to degrade C=P compounds are 10-19Kb, 10Kb, and 12-18 Kb, respectively. Moreover, they expressed the phenotype for each Pn when they were transformed into $\Delta phn$ mutants. Hence, it is postulated that Pseudomonas sp.#A1 has three kind of Pn degradative pathway, separately. The phn clones($AEPn^+$, $MPn^+$, $GPS^+$) are verified as the members of PHO regulon because of their phoBR-dependent characteristics.

  • PDF