Browse > Article

Cloning and Nucleotide Sequence Analysis of xylC Gene Encoding 5C-2HMS Dehydrogenase from Pseudomonas sp. S-47.  

Park, Song-Yi (Department of Microbiology, Chungbuk National University)
Lee, Dong-Hoon (Department of Microbiology, Chungbuk National University)
Kim, Young-Soo (Department of Pharmacy,Chungbuk National University)
Lee, Kyung (Department of Microbiology, Changwon National University)
Kim, Chi-Kyung (Department of Microbiology, Chungbuk National University)
Publication Information
Microbiology and Biotechnology Letters / v.30, no.1, 2002 , pp. 8-14 More about this Journal
Abstract
Pseudomonas sp. S-47 is capable of degrading 4-chlorobenzoate to produce 5-chloro-2-hydroxymuconic semialdehyde (5C-2HMS) by the enzymes encoding by xylXYZLTE cluster. In this study, the resulting 5C-2HMS was confirmed to be transformed to 5-chloro-2-hydroxymuconic acid (5C-2HMA) by 5C-2HMS dehydrogenase. The xylG gene encoding 5C-2HMS dehydrogenase was cloned from the chromosomal DNA of strain S-47. The nucleotide sequence of xylG showed to be composed of 1,600 base pairs with ATG initiation and TGA termination codons. A deduced amino acid sequence of the 5C-2HMS dehydrogenase (XylG) exhibited 98%, 93%, and 89% identity with those of the dehydrogenases from P. putida mt-2, P. putida G7, and Pseudomonas sp. CF600, respectively.
Keywords
xylG; Cloning and sequencing; 5C-2HMS; Pseudomonas sp. S-47;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Brinkmann, U. and W. Reineke. 1992. Degradation of chlorotoluenes by in vivo constructed hybrid strains: problems of enzyme specificity, induction and prevention of meta-path way. FEMS Microbial. Lett. 96: 81-88.   DOI   ScienceOn
2 Harayama, S. and R. Monique. 1989. Bacterial aromatic ring-cleavage enzymes are classified into two different gene familes.J. BioI. Chem. 264: 15328-15333.
3 Keil, H., S. Keil, R. W Pickup, and P. A. Wiliams. 1985. Evolutionary conservation of genes coding for meta pathway enzymes within TOL plasmids pWWO and pWW53. J. Bacterial. 164: 887-895.
4 Harayama, S., M. Rekik, A. Wasserfallen, and A. Bairoch. 1987. Evolutionary relationships between catabolic pathways for aromatics: conservation of gene order and nucleotide sequence of catechol oxidation genes of pWWO and NAH7 plasmids. Mol. cen. Genet. 210: 241-247.
5 Kim, K. P., D. J. Seo, D. H. Lee, Y Kim and C. K. Kim. 1998. Cloning and expression in E. coli of the genes responsible for degradation of 4-chlorobenzoate and 4-chlorocatechol from Pseudomonas sp. S-47. J. Microbiol. 36: 99-105.
6 Park, D. W, Y Kim, S. M. Lee, J. O. Ka, and C. K. Kim. 2000. Cloning and nucleotide sequence analysis of xylL gene responsible for 4CBA-dihydrodiol dehydrogenase from Pseudomonas sp. S-47. J. Microbial. 38: 275-280.
7 Sentchilo, V S., A. N. Perebituk, A. J. B. Zehnder, and J. Roelof van der Meer. 2000. Molecular diversity of plasmids bearing genes that encode toluene and xylene metabolism in Pseudomonas strains Isolated from different contaminated sites in belarus. Appl. Environ. Microbiol. 66: 2842-2852.
8 Sambrook, J., E. F. Fritisch, and T. Maniatis. 1989. Molecular cloning: A laboratory mannual. 2nd. ed. Cold Spring Harbour, NY
9 Hughes, E. L., R. C. Bayly, and R. A. Skurray, 1984, Evidence for isofunctional enzymes in the degradation of phenol, m- and p-toluate, and p-cresol via catechol metacleavage pathways in Alcaligenes eutrophus. J. Bacterial. 158: 79-83.
10 Kim, Y, B. Choi, J. Lee, H. Chang, and K. R. Min. 1992. Characterization of catechol 2,3-dioxygenase. Biochem. BioPhys. Res. Comm. 183: 77-82.   DOI   ScienceOn
11 Inoue, J., J. P. Shaw, M. Rekik, and S. Harayama. 1995. Overlapping substrate specificities of benzaldehyde dehydrogenase (the xylC gene product) and 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product) encoded by TOL plasmid pWWO of Pseudomonas putida. J. Bacterial. 177: 1196-1201.
12 Noh, S. J., Y Kim, K. H. Min, T. B. Karegoudar, and C. K. Kim. 2000. Cloning and nucleotide sequence analysis of xylE gene responsible for meta-Cleavage of 4-chlorocatechol from Pseudomonas sp. S-47. Mol. Cells. 10: 475--479.
13 Harayama, S and M. Rekik. 1990. The meta cleavage operon of TOL degradative plasmid pWWO comprises 13 genes. Mol. Gen. Genet, 221: 113-120.
14 Seo, D. I., J. C. Chae, K. P. Kim, Y S. Kim, K. S. Lee, and C. K. Kim. 1998. A pathway for 4-chlorobenzoate degradation by Pseudomonas sp. S-47. J. Microbial. Biotech. 8: 96100.
15 Hom, J. M., S. Harayama, and K. N. Timmis. 1991. DNA sequence determination of the TOL plasmid (PWWO) xylGFJ genes of Pseudomonas putida. Mol, Microbial. 5: 2459-2474.
16 Zaitsev, G. M., T. V Tsoi, V G. Grishenkov, E. G. Plotnikova and A. M. Boronin. 1991. Genetic control of degradation of chlorinated benzoic acids in Arthrobacter globiformis, Corynebacterium sepedonicum and Pseudomonas cepacia strains. FEMS Microbiol. Lett. 81: 171-176.
17 Kim, K. P., D. J. Seo, K. H. Min, J. O. Ka,Y K. Park, and C. K. Kim. 1997. Characteristics of catechol 2,3-dioxygenase produced by 4-chlorobenzoate degrading Pseudomonas sp S47. J. Microbial. 35: 295-299.
18 Arendorf, J. J. and D. D. Focht. 1995.A meta-cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166. Appl. Environ. Microbiol. 61: 443-447.
19 Harayama, S., M. Kok, and E. L. Neidle. 1992. Functional and evolutionary relationships among diverse oxygenases. Annu, Rev. Microbial. 46: 565-601.
20 Cerdan, P., A. Wasserfallen, M. Rekik, K. N. Timmis, and S. Harayama. 1994. Substrate specificity of catechol 2,3-dioxygenases encoded by TOL plasmid pWWO of Pseudomonas putida and its relationship to cell growth. J. Bacterial. 176: 6074-6081,