• Title/Summary/Keyword: Pseudo-random numbers

Search Result 23, Processing Time 0.028 seconds

Test Methods of a TRNG (True Random Number Generator) (TRNG (순수 난수 발생기)의 테스트 기법 연구)

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.803-806
    • /
    • 2007
  • Since the different characteristics from the PRNG (Pseudo Random Number Generator) or various deterministic devices such as arithmetic processing units, new concepts and test methods should be suggested in order to test TRNG (Ture Random Number Generator). Deterministic devices can be covered by ATPG (Automatic Test Pattern Generation), which uses patterns generated by cyclic shift registers due to its hardware oriented characteristics, pure random numbers are not possibly tested by automatic test pattern generation due to its analog-oriented characteristics. In this paper, we studied and analyzed a hardware/software combined test method named Diehard test, in which we apply continuous pattern variation to check the statistics. We also point out the considerations when making random number tests.

  • PDF

5-Neighbor Programmable CA based PRNG (프로그램 가능한 5-이웃 CA기반의 PRNG)

  • Choi, Un-Sook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.357-364
    • /
    • 2022
  • A pseudo-random number generator (PRNG) is a program used when a large amount of random numbers is needed. It is used to generate symmetric keys in symmetric key cryptography systems, generate public key pairs in public key cryptography or digital signatures, and generate columns used for padding with disposable pads. Cellular Automata (CA), which is useful for specific representing nonlinear dynamics in various scientific fields, is a discrete and abstract computational system that can be implemented in hardware and is applied as a PRNG that generates keys in cryptographic systems. In this paper, I propose an algorithm for synthesizing a programmable 5-neighbor CA based PRNG that can effectively generate a nonlinear sequence using 5-neighbor CA with the radius of the neighboring cell increased by 2.

A Pseudo-Random Beamforming Technique for Time-Synchronized Mobile Base Stations with GPS Signal

  • Son, Woong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2018
  • This paper proposes a pseudo-random beamforming technique for time-synchronized mobile base stations (BSs) for multi-cell downlink networks which have mobility. The base stations equipped with multi-antennas and mobile stations (MSs) are time-synchronized based on global positioning system (GPS) signals and generate a number of transmit beamforming matrix candidates according to the predetermined pseudo-random pattern. In addition, MSs generate receive beamforming vectors that correspond to the beam index number based on the minimum mean square error (MMSE) using transmit beamforming vectors that make up a number of transmit beamforming matrices and wireless channel matrices from BSs estimated via the reference signals (RS). Afterward, values of received signal-to-interference-plus-noise ratio (SINR) with regard to all transmit beamforming vectors are calculated, and the resulting values are then feedbacked to the BS of the same cells along with the beam index number. Each of the BSs calculates each of the sum-rates of the transmit beamforming matrix candidates based on the feedback information and then transmits the calculated results to the BS coordinator. After this, optimum transmit beamforming matrices, which can maximize a sum-rate of the entire cells, are selected at the BS coordinator and informed to the BSs. Finally, data signals are transmitted using them. The simulation results verified that a sum-rate of the entire cells was improved as the number of transmit beamforming matrix candidates increased. It was also found that if the received SINR values and beam index numbers are feedbacked opportunistically from each of the MSs to the BSs, not only nearly the same performance in sum-rate with that of applying existing feedback techniques could be achieved but also an amount of feedback was significantly reduced.

True Random Number Generation Method by using the Moire Fringe (무아레 무늬를 이용한 참 난수 생성 방법)

  • kang, Hyeok;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.1
    • /
    • pp.23-27
    • /
    • 2016
  • There is Generated Moire fringe by fresnel diffraction that explains one of light's physical phenomenon and interference. In this paper, we propose to generate true random numbers by Moire fringe should be used by not pseudo-random number in cryptosystem.

Design variation serial test using binary algorithm (이진 알고리즘을 이용한 변형 시리얼테스트 설계에 관한 연구)

  • Choi, Jin-Suk;Lee, Sung-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.76-80
    • /
    • 2010
  • It is floating to security of information and the early assignment that it is important it processes and to transmit in inundations of information that I changed suddenly. I used the encryption/decryption process that applied simple substitution and mathematical calculation algorithm at theory and encryption transmission steps protective early information. Hardware and financial loss are using spurious random number to be satisfied with the random number anger that isn't real random number to size so much perfect information protection using One-time pad for applying this. I was transformed into serial test under a test to prove spurious random number anger, and it is into random number anger stronger, and the transformation serial test that proposes is proving it in algorithm speed and efficiency planes.

Color Image Encryption using MLCA and Bit-oriented operation (MLCA와 비트 단위 연산을 이용한 컬러 영상의 암호화)

  • Yun, Jae-Sik;Nam, Tae-Hee;Cho, Sung-Jin;Kim, Seok-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.141-143
    • /
    • 2010
  • This paper presents a problem of the existing encryption method using MLCA or complemented MLCA and propose a method to resolve this problem. With the existing encryption methods, the result of encryption is affected by the original image because of spatial redundancy of adjacent pixels. In this proposed method, we transform spatial coordinates of all pixels into encrypted coordinates. We also encrypt color values of the original image by operating XOR with pseudo-random numbers. This can solve the problem of existing methods and improve the levels of encryption by randomly encrypting pixel coordinates and pixel values of original image. The effectiveness of the proposed method is proved by conducting histogram, key space analysis.

  • PDF

Security Improvement of Authentication Method Using Transfer Agent in USN

  • Cho, Do-Eun
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.35-43
    • /
    • 2011
  • USN is a technology to detect human external environment. It is an important factor in buildinga ubiquitous computing environment. In this thesis, an authentication method was proposed to allow the sensor nodes, which have weak computing operation capability, to safely communicate with each other in USN and guarantee the anonymity of users for their privacy. In the proposed authentication method that takes into account the characteristics of sensor network, sensor nodes based on a symmetric key algorithm do not transfer keys directly, instead, they mix the random numbers received from AS to generate keys necessary for communications, having a master key and a pseudo-random number generator.In addition, in this thesis, TA was adopted to minimize the leakage of users' information, and a scheme through which virtual IDs received from AS are delivered to sensor nodes was applied to improve anonymity.

Dual-mode Pseudorandom Number Generator Extension for Embedded System (임베디드 시스템에 적합한 듀얼 모드 의사 난수 생성 확장 모듈의 설계)

  • Lee, Suk-Han;Hur, Won;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.95-101
    • /
    • 2009
  • Random numbers are used in many sorts of applications. Some applications, like simple software simulation tests, communication protocol verifications, cryptography verification and so forth, need various levels of randomness with various process speeds. In this paper, we propose a fast pseudorandom generator module for embedded systems. The generator module is implemented in hardware which can run in two modes, one of which can generate random numbers with higher randomness but which requires six cycles, the other providing its result within one cycle but with less randomness. An ASIP (Application Specific Instruction set Processor) was designed to implement the proposed pseudorandom generator instruction sets. We designed a processor based on the MIPS architecture,, by using LISA, and have run statistical tests passing the sequence of the Diehard test suite. The HDL models of the processor were generated using CoWare's Processor Designer and synthesized into the Dong-bu 0.18um CMOS cell library using the Synopsys Design Compiler. With the proposed pseudorandom generator module, random number generation performance was 239% faster than software model, but the area increased only 2.0% of the proposed ASIP.

A Design of a Robust Vector Quantizer for Wavelet Transformed Images (웨이브렛벤환 영상 부호화용 범용 벡터양자화기의 설계)

  • Do, Jae-Su;Cho, Young-Suk
    • Convergence Security Journal
    • /
    • v.6 no.4
    • /
    • pp.83-90
    • /
    • 2006
  • In this paper, we propose a new design method for a robust vector quantizer that is independent of the statistical characteristics of input images in the wavelet transformed image coding. The conventional vector quantizers have failed to get quality coding results because of the different statistical properties between the image to be quantized and the training sequence for a codebook of the vector quantizer. Therefore, in order to solve this problem, we used a pseudo image as a training sequence to generate a codebook of the vector quantizer; the pseudo image is created by adding correlation coefficient and edge components to uniformly distributed random numbers. We will clearly define the problem of the conventional vector quantizers, which use real images as a training sequence to generate a codebook used, by comparing the conventional methods with the proposed through computer simulation. Also, we will show the proposed vector quantizer yields better coding results.

  • PDF

Evaluation of Optimum Genetic Contribution Theory to Control Inbreeding While Maximizing Genetic Response

  • Oh, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.299-303
    • /
    • 2012
  • Inbreeding is the mating of relatives that produce progeny having more homozygous alleles than non-inbred animals. Inbreeding increases numbers of recessive alleles, which is often associated with decreased performance known as inbreeding depression. The magnitude of inbreeding depression depends on the level of inbreeding in the animal. Level of inbreeding is expressed by the inbreeding coefficient. One breeding goal in livestock is uniform productivity while maintaining acceptable inbreeding levels, especially keeping inbreeding less than 20%. However, in closed herds without the introduction of new genetic sources high levels of inbreeding over time are unavoidable. One method that increases selection response and minimizes inbreeding is selection of individuals by weighting estimated breeding values with average relationships among individuals. Optimum genetic contribution theory (OGC) uses relationships among individuals as weighting factors. The algorithm is as follows: i) Identify the individual having the best EBV; ii) Calculate average relationships ($\bar{r_j}$) between selected and candidates; iii) Select the individual having the best EBV adjusted for average relationships using the weighting factor k, $EBV^*=EBV_j(1-k\bar{{r}_j})$ Repeat process until the number of individuals selected equals number required. The objective of this study was to compare simulated results based on OGC selection under different conditions over 30 generations. Individuals (n = 110) were generated for the base population with pseudo random numbers of N~ (0, 3), ten were assumed male, and the remainder female. Each male was mated to ten females, and every female was assumed to have 5 progeny resulting in 500 individuals in the following generation. Results showed the OGC algorithm effectively controlled inbreeding and maintained consistent increases in selection response. Difference in breeding values between selection with OGC algorithm and by EBV only was 8%, however, rate of inbreeding was controlled by 47% after 20 generation. These results indicate that the OGC algorithm can be used effectively in long-term selection programs.