• Title/Summary/Keyword: Pseudo Range Correction

Search Result 22, Processing Time 0.026 seconds

Autonomous Stationkeeping System for Geostationary Satellite (정지위성 자동위치유지 시스템에 관한 연구)

  • Park, Bong-Kyu;Tahk, Min-Jea;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.67-76
    • /
    • 2004
  • This paper improves existing 'fly-the-wire' based autonomous station-keeping system, suitable for geostationary satellite and introduces results of computer simulations conducted to verify the algorithm. The on-board stationkeeping system receives pseudo-range signals from two ground equipments located with long baseline, determines the orbit error in realtime and generates orbit control commands. To reduce fuel consumption, this paper proposes an on-board orbit control logic using modified fly-the-wire method. The modified fly-the-wire method de-couples error components into two dynamic modes, harmonic and linear motion. The harmonic error components are removed by applying output commands produced by feedback controller, and the linear motions are controlled by the correction ${\Delta}V\;s$ added to reference maneuvers. The reference maneuvers are generated through the ground based computer simulation and embedded or uploaded into the on-board computer with time tags. Finally, the performance of the proposed algorithm is verified through a series of computer simulations.

Development of Removal Techniques for PRC Outlier & Noise to Improve NDGPS Accuracy (국토해양부 NDGPS 정확도 향상을 위한 의사거리 보정치의 이상점 및 노이즈 제거기법 개발)

  • Kim, Koon-Tack;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.63-73
    • /
    • 2011
  • The Pseudorange Corrections (PRC), which are used in DGPS as calibration messages, can contain outliers, noise, and anomalies, and these abnormal events are unpredictable. When those irregular PRC are used, the positioning error gets higher. In this paper, we propose a strategy of detecting and correcting outliers, noise, and anomalies by modeling the changing pattern of PRC through polynomial curve fitting techniques. To validate our strategy, we compared positioning errors obtained without PRC calibation with those with PRC calibration. As a result, we found that our algorithm performs very well; the horizontal RMS error was 3.84 m before the correction and 1.49 m after the correction.

A Warning Threshold Proposal for Operation Improvement of Maritime DGPS Reference Station (해양용 DGPS 운영성 개선을 위한 시스템 경고 임계값 제안)

  • Choi, Yong Kwon;Lee, Ju Hyun;Son, Seok Bo;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.12-20
    • /
    • 2017
  • A maritime DGPS in Korea offers pseudo-range correction information and monitors integrity of correction data by using multiple GNSS receivers. The maritime DGPS reference station and integrity monitor service sets alarm threshold value about integrity monitoring parameters for preventing service interruption status. However there is no way to avoid system interruption according to malfunction of backup systems and outside factors. Therefore, in this paper, warning threshold values were proposed for maritime DGPS operator can be counteract in advance. And Markov analysis method was carried out for selection of these warning threshold values.

Performance Analysis of the Robust Least Squares Target Localization Scheme using RDOA Measurements

  • Choi, Ka-Hyung;Ra, Won-Sang;Park, Jin-Bae;Yoon, Tae-Sung
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.606-614
    • /
    • 2012
  • A practical recursive linear robust estimation scheme is proposed for target localization in the sensor network which provides range difference of arrival (RDOA) measurements. In order to radically solve the known practical difficulties such as sensitivity for initial guess and heavy computational burden caused by intrinsic nonlinearity of the RDOA based target localization problem, an uncertain linear measurement model is newly derived. In the suggested problem setting, the target localization performance of the conventional linear estimation schemes might be severely degraded under the low SNR condition and be affected by the target position in the sensor network. This motivates us to devise a new sensor network localization algorithm within the framework of the recently developed robust least squares estimation theory. Provided that the statistical information regarding RDOA measurements are available, the estimate of the proposition method shows the convergence in probability to the true target position. Through the computer simulations, the omnidirectional target localization performance and consistency of the proposed algorithm are compared to those of the existing ones. It is shown that the proposed method is more reliable than the total least squares method and the linear correction least squares method.

Development of Linearly Interpolated PRC Regenerating Algorithm to Improve Navigation Solution using Multi-DGPS Reference Stations

  • Oh, Kyung-Ryoon;Kim, Jong-Chul;Nam, Gi-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1618-1622
    • /
    • 2004
  • In this paper, the linearly interpolated PRC(Pseudo Range Correction) regenerating algorithm was applied to improve the DGPS(Differential Global Positioning System) positioning accuracy at user's spot by using the various PRC information obtained from multi-DGPS reference stations. The PRC information of each GPS satellite is not varying rapidly; it is possible to assume that the variation of PRC information of each GPS satellite is linear. So the linearly interpolated PRC regenerating algorithm can be applied to improve the DGPS positioning accuracy at user's spot by using the various PRC information obtained from multi-DGPS reference stations. To test the performance of the linearly interpolated PRC regenerating algorithm, maritime DGPS reference stations' PRC data was used in RTCM format. 11 maritime DGPS reference stations are in service providing DGPS information to public since 1999. Two set of 3 DGPS reference stations are selected to compare the performance of the linearly interpolated PRC regenerating algorithm. The DGPS positioning accuracy was dramatically improved about 40%. Linearly interpolated PRC regenerating algorithm adopted multi-channel DGPS receiver will be developed in near future.

  • PDF

Analysis of DGLONASS Test Service in Republic of KOREA (DGLONASS 시범서비스 분석)

  • Lim, Young-Min;Joe, Mi-Jin;Choi, Yong-Kwon;Park, Woo-Gyoung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.188-189
    • /
    • 2017
  • In recent years, the development of GPS navigation system (GNSS), which has been developed not only by US GPS but also by major countries, is entering its final stage. It is time to change the infrastructure and technology system to correct each satellite system. To do this, we analyze the performance of the differential information provided by National Maritime PNT Office for GLONASS currently operating in its normal orbit, and present the its feasibility.

  • PDF

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements

  • Kim, Mi-So;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The purpose of this study is to develop precise point positioning (PPP) algorithms based on GLONASS code-pseudorange, verify their performance and present their utility. As the basic correction models of PPP, we applied Inter Frequency Bias (IFB), relativistic effect, satellite antenna phase center offset, and satellite orbit and satellite clock errors, ionospheric errors, and tropospheric errors that must be provided on a real-time basis. The satellite orbit and satellite clock errors provided by Information-Analytical Centre (IAC) are interpolated at each observation epoch by applying the Lagrange polynomial method and linear interpolation method. We applied Global Ionosphere Maps (GIM) provided by International GNSS Service (IGS) for ionospheric errors, and increased the positioning accuracy by applying the true value calculated with GIPSY for tropospheric errors. As a result of testing the developed GLONASS PPP algorithms for four days, the horizontal error was approximately 1.4 ~ 1.5 m and the vertical error was approximately 2.5 ~ 2.8 m, showing that the accuracy is similar to that of GPS PPP.

UDRE Monitoring Analysis of Korean Satellite Navigation System (한국형 위성항법시스템의 UDRE 모니터링 분석)

  • Park, Jong-Geun;Ahn, Jongsun;Heo, Moon-Beom;Joo, Jung Min;Lee, Kihoon;Sung, Sangkyung;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.125-132
    • /
    • 2015
  • This paper is about analysis of UDRE monitoring method for Korean Satellite navigation system, which is the correction parameter of satellite measurements. New receiver clock bias and tropospheric delay error estimation method to make pseudo-range residual for UDRE monitoring is proposed. Saastamoinen model and Neill mapping function are used for estimate the tropospheric delay and EKF is used for estimgate the receiver clock bias. Through the satellite measurements and regional weather data received directly from the domestic is using for UDRE monitoring analysis, more suitable UDRE monitoring threshold can be deducted and it is expected to be utilized for fault detection technique of Korean Satellite Navigation System.

Comparative Analysis of Performance for DGPS and SBAS in Korea Region (국내 지역에서의 DGPS와 SBAS 성능 비교 분석)

  • Lim, Cheol-soon;Park, Byung-woon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • The international maritime organization(IMO) has defined performance requirements for future maritime navigation through IMO resolution A.915(22) in 2001. Many DGPS systems currently providing DGPS services do not meet the performance requirements specified in IMO resolution A.915(22). The use of SBAS is considered as one of the DGPS replacement and supplementary system for coping with the increase in demand performance and providing safe positioning service. In particular, since a large amount of budget is required to rearrange the existing DGPS reference stations, a method which transmits differential corrections generated by using SBAS message has been proposed. In this paper, we compare and analyze the performance of NDGPS which is operated by the National Maritime PNT Office of the ministry of oceans and fisheries(MOF) in Korea and MSAS in Japan. Also, we verify that SBAS, as alternative and complementary system, meets the performance requirement specified in IMO resolution A.915(22).

Design and Performance Evaluation of DGPS Based on Optimal and Sub-optimal Reference Point (Optimal 및 Sub-optimal 기준점을 사용한 DGPS 설계 및 성능평가)

  • 고광섭;홍성래;정세모
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.343-352
    • /
    • 1998
  • The use of DGPS enhances standalone GPS accuracy and removes common errors from two or more receivers viewing the same satellites. The design of DGPS system contains a precise reference point which is able to compute the common errors to update the pseudo range of users receivers. It should take a great time and cost to provide precise and sufficient accuracy of the reference point. That is, it is natural to measure the parameters from satellites with specific survey instrument system, and then obtain that by post processing. The purpose of the study is to examine the bounds of accuracy which resulted from RTCM correction data transmitted from a simply designed DGPS system. In the paper, We design and evaluate the DGPS system based m the surveyed reference point, and Sub-optimal no by a Standalone GPS as well. As a result of the study, it is shown that the designed system may be applied to the specific marine activity in civilian and military.

  • PDF