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Performance Analysis of the Robust Least Squares Target Localization 
Scheme using RDOA Measurements  

 
 

Ka Hyung Choi*, Won-Sang Ra**, Jin Bae Park† and Tae Sung Yoon***  
 

Abstract – A practical recursive linear robust estimation scheme is proposed for target localization in 
the sensor network which provides range difference of arrival (RDOA) measurements. In order to 
radically solve the known practical difficulties such as sensitivity for initial guess and heavy 
computational burden caused by intrinsic nonlinearity of the RDOA based target localization problem, 
an uncertain linear measurement model is newly derived. In the suggested problem setting, the target 
localization performance of the conventional linear estimation schemes might be severely degraded 
under the low SNR condition and be affected by the target position in the sensor network. This 
motivates us to devise a new sensor network localization algorithm within the framework of the 
recently developed robust least squares estimation theory. Provided that the statistical information 
regarding RDOA measurements are available, the estimate of the proposition method shows the 
convergence in probability to the true target position. Through the computer simulations, the omni-
directional target localization performance and consistency of the proposed algorithm are compared to 
those of the existing ones. It is shown that the proposed method is more reliable than the total least 
squares method and the linear correction least squares method.   

 
Keywords: RDOA, Target localization, Robust least squares estimation, Pseudo linear estimator, 
Sensor network    

 
 
 

1. Introduction 
 

Nowadays, it has been widely recognized that the TDOA 
(time difference of arrival)-based target localization is 
crucial for the development of a surveillance system [1-3]. 
This is because there are practical limitations in the 
existing target localization schemes using other 
information; the performance of the AOA (angle of 
arrival)-based system might be ensured when the sensor 
array is precisely calibrated and that of the TOA (time of 
arrival)-based system totally depends on the accuracy of 
the emission time [4]. 

There has been much attempt to deal with the target 
localization using TDOA measurements [5-7]. The TDOA-
based target localization problem could be characterized by 
the nonlinear state estimation problem for determining a 
unique crossing point between two parabolic functions. To 
effectively handle this inherent nonlinearity of the problem, 
based on the Gaussian measurement noise assumption, the 
target localization problem was formulated within the 
framework of MLE (maximum likelihood estimation). 
Although the MLE method is one of possible choices to 

solve the problem, unfortunately, it has a few well-known 
flaws not to be overlooked. It inevitably relies on the 
numerical method to obtain the solution. Moreover, if one 
cannot choose proper initial guess for solving the problem, 
the ML localization algorithm could not guarantee the 
optimal estimation performance [8]. 

To overcome the above mentioned flaws, a closed-form 
PL (pseudo-linear) estimation technique has been studied 
by many researchers. Under the standing assumptions that 
three or more TDOA measurements are available and the 
measurement error is small enough, it converts the 
nonlinear estimation problem to the linear one by 
introducing an auxiliary state variable [9, 10]. For its 
recursive linear structure, the sensitivity problem against 
the initial guess could be successfully relaxed. As well, it is 
possible to implement the resultant localization algorithm 
on the cheap microprocessor. In spite of its usefulness, the 
localization performance of the existing PL localization 
schemes is severely deteriorated under low SNR conditions. 
This is because the noisy data is reused for constituting the 
measurement matrix [11-14].  

In order to remove the estimation error due to the noise 
corrupted measurement matrix, the QCLS (quadratic 
correction LS) algorithm which consists of the nominal LS 
estimator and the corrector was proposed in [11]. As a 
more advanced form, the LCLS (linear correction LS) 
method has been also proposed in [12]. The LCLS 
algorithm minimizes the cost function defined by 
augmenting the original LS cost and the nonlinear state 
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equality constraint by using the Lagrange multiplier. Both 
algorithms of the QCLS and the LCLS provide relatively 
good localization performance over the conventional PL 
estimator. However, to obtain the error reduced estimates, 
since the QCLS requires two-stage LS estimator and the 
LCLS needs a numerical method, they are not free from the 
computational burden.  

Meanwhile, in view of the EIV (error-in-variable) model, 
the TLS (total least squares) based localization algorithm 
has been proposed [4, 14]. It attempts to make the set of 
consistent equations using correction terms for the noise 
component present in the measurement matrix of the PL. 
The TLS is a natural extension of the least squares method. 
However, the inevitable correlation between the noise in 
the measurement matrix and the measurement noise 
restricts the performance improvement. 

To ensure the satisfactory localization performance 
under low SNR conditions, one may consider a robust state 
estimation. In 2007, the RoLS (robust least squares) 
estimator was proposed which can compensate the 
estimation error caused by the noises of the measurement 
matrix and the measurement [13]. By using the predefined 
auto-correlation of the measurement matrix noise and the 
cross-correlation between the measurement matrix noise 
and the measurement noise, the RoLS compensates the 
estimation error without computational burden. Additionally, 
the estimate of the proposed method converges to the true 
value with the convergence in probability. 

In this paper, we build a new target localization 
estimator based on the RoLS algorithm. It is assumed that 
the localization is carried out in an open space to minimize 
the multipath effect of the RDOA measurement. The 
proposition is proven that the estimation results converge 
to the true target position in probability. Through the 
computer simulations, the omni-directional target 
localization performance and consistency of the proposed 
algorithm are compared to those of the existing ones. 

 
 
 

2. Pseudo Linear Measurement Model using 
RDOA Measurement 

 
Let’s assume that the sensors in the 2-D network as Fig. 1.  
 
 

 
Fig. 2. Relative geometry for target localization using 

RDOA measurements 

The positions of n+1 fixed sensors are known exactly 
as ( , )j jx y , 1, 2, , 1.j n= + A set of n TDOA 
measurements jτ , 2, , 1j n= + , is collected at various 
position. In the absence of measurement errors, the TDOA 
measurements at step k can be yielded to the RDOA, jr  
by multiplying the propagation velocity of the source as 
follows: 

 
 , ,1( ) ( ) ( ) ( )j p j t j tr k v k d k d kτ= = −   (1) 

 
where pv is the propagation velocity constant and ,t jd  is 
the distance between the target ( , )t tx y and jth sensor: 
 

 ( ) ( )2 2

, ( ) ( ) ( ) .t j t j t jd k x k x y k y− + −       (2) 

 
In the presence of additive measurement noises which 

are zero mean white noise, jrδ with variance 2
jσ , the 

RDOA measurements become 
 

 ( ) ( ) ( ),  2,3, , 1.j j jr k r k r k j nδ= + = +    (3) 
 
These n nonlinear equations can be written as a single 

equation with n-dimensional column vectors: 
 

 ( ) ( ) ( )k k kδ= +r r r   (4) 
 
On the other hand, by introducing an intermediate 

variable ,1td and squaring both sides of (3), we obtain the 
following linear measurement equations. 
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where ,0jd  is the distance from the jth sensor to the origin. 
From the above result, the linear measurement equation 
can also be represented by n-dimensional column vectors 
and matrices as follows: 

 

 
   

k k k k

k k k k

Y H X v
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= +

⎡ ⎤= − Δ +⎣ ⎦
 (5) 

 
where the relevant vectors and matrices are defined as 

 

 

2 2 2
2 2,0 1,0

2 2 2
2,0 1,0

( )
,

( )
k

n

r k d d
Y

r k d d

⎡ ⎤− +
⎢ ⎥
⎢ ⎥
⎢ ⎥− +⎣ ⎦

 



Performance Analysis of the Robust Least Squares Target Localization Scheme using RDOA Measurements   

 

608 

 
2 1 2 1 2

1 1

( )
2 ,

( )
k

n n n

x x y y r k
H

x x y y r k

− −⎡ ⎤
⎢ ⎥− ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
2 1 2 1 2

1 1

( )
2 ,

( )
k

n n n

x x y y r k
H

x x y y r k

− −⎡ ⎤
⎢ ⎥− ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
2 1 2 1 2

1 1

( )
2 ,

( )
k

n n n

x x y y r k
H

x x y y r k

− −⎡ ⎤
⎢ ⎥− ⎢ ⎥
⎢ ⎥− −⎣ ⎦

        (6) 

 
20 0 ( )

2 ,
0 0 ( )

k

n

r k
H

r k

δ

δ

⎡ ⎤
⎢ ⎥Δ − ⎢ ⎥
⎢ ⎥⎣ ⎦

           (7) 

 ,1( ) ( ) ( ) ,
TT

k t t tX x k y k d k⎡ ⎤⎣ ⎦  

 
( )

( )

2
2 2 2

2

2 ( ) ( ) ( )
.

2 ( ) ( ) ( )
k

n n n

r k r k r k
v

r k r k r k

δ δ

δ δ

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

        (8) 

 
From (7) and (8), stochastic properties for kHΔ  and kv  

are given by 
 

 [ ] ( 1) 3 ,n
kE H O − ×Δ =  

 [ ]
2
2

2

,k k

n

E v b
σ

σ
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To make the problem simple, based on the assumption 

that the variance of the RDOA measurement noise are 
given, one defined the bias removed linear measurement 
equation as 

 
 ( )k k k k kY H H X v= − Δ +        (12) 

 
where 

 
 ,   k k k k k kY Y b v v b− −  
 

Remark 1. For the RDOA measurements equation, one 
can use the nonlinear equation from (4) or the linear 
equation from (12). However, there may be a discrepancy 
in the localization performance if the comparison is 
performed over whole azimuth of the sensor network. The 
reason is that the measurement noise of the nonlinear 

equation ( )kδ r  is just additive RDOA measurement noise 
but the linear equation one kv is not only the RDOA 
measurement noise but also the RDOA measurement itself 
as shown in (8): ( )( ), ( ) ,  2, ,k j jv f r k r k j nδ= = . 

To check the discrepancy of the performance over the 
whole azimuth of the sensor network, the least squares 
(LS) estimators have been used for each measurement 
model: the nonlinear LS is obtained from (4) and the linear 
LS is from (12). (For the theoretical comparison with the 
nonlinear, the linear LS has been used the true 
measurement matrix kH  in the simulation.) The sensor 
network is assumed that the sensors are at (0, 0), (0, 3000), 
(0, 6000), (6000, 6000), (6000, 3000), (6000, 0) [m]. Their 
sensor geometry is similar to [1]. The RDOA noise 
variance is 20000[m2]. The target positions are selected 
1500[m] far from the center of the sensor network, (3000, 
3000), and we check the estimation error variance every 10 
degree around the center. The iteration number of 
simulations is 100 and the simulation is performed to 500 
steps at every iteration.  

As shown at Fig. 2, the estimation error variance over 
the whole azimuth of the linear LS is not identical for 
every target position. This is because the non-uniform 
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measurement noise of the linear equation. However, in this 
geometry of the network, the linear LS estimator is 
generally smaller than the nonlinear one. 

 
Remark 2. The linear estimator is more advantageous 

than the nonlinear one at the practical aspects such as 
observability and real-time implementation. However, the 
given linear measurement Eq. (12) is an uncertain linear 
measurement equation with stochastic parametric 
uncertainties, kHΔ . The available measurement matrix is 
not kH  but kH . Therefore, it is noted that the linear LS 
of this simulation is not implementable in practice.  

Since the true measurement matrix is not available, the 
NLS (nominal least squares) solution has been proposed 
based on the following PL measurement equation which 
neglects the uncertainty matrix kHΔ from the Eq. (12) 
under the assumption that the noise component of the 
uncertainty matrix is small enough.  

 
 ( )k k k k k k k kY H H X v H X v= − Δ + ≈ +  

 
However, this standing assumption could decline the 

estimation performance if the SNR of the RDOA 
measurement is low.  

 
Lemma 1: (Estimation errors with NLS) [13] From the 

following vector represented measurement equation for 
(12) 
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⎝ ⎠

      (13) 

 
, one can define a possible cost function using the available 
information kH  as 

 

 ( ) ( )Tk k k k
k k kJ Y H X Y H X= − −  

 
Then, the NLS, the minimum solution of the cost 

function, is 
 

 { } { }1ˆ ( ) ( ) ( )NLS k T k k T k
kX H H H Y

−
=  

 
and it has estimation errors by the uncertainties as follows: 
 

 
{ } ( ){ }1ˆ ( ) ( ) ( )

         =

NLS k T k k T k
k k k

k k k k
errors

X H H H H X v

X Xα β

−
= −

− +  

 
where the scale-factor error 

 

 { } { }1
( ) ( ) ( ) ,k T k k T k

k H H H Hα
−

Δ        (14) 

 
and the bias error 

 

 { } { }1
( ) ( ) ( ) .k T k k T k

k H H H vβ
−

         (15) 

 
To compensate the estimation error of the NLS, there 

have been several proposed linear estimators. For the 
vectorized uncertain linear measurement Eq. (12), one of 
the linear estimators is the TLS in [14] which is defined as 

 

 { } 12ˆ ( ) ( ) ( )TLS k T k k T k
kX H H I H Yσ

−
= −    (16) 

 
where σ  is a minimum singular value for the matrix 

 
 .k k TH Y U V⎡ ⎤ = Σ⎣ ⎦      (17) 

 
The other one is the LCLS in [12] which is defined as 
 

 { } 1ˆ ( ) ( ) ( )LCLS k T k k T k
kX H H M H Yλ

−
= −    (18) 

 
where 

 
 [ ]( )1 1 1M diag= −  

 
and λ  denotes the Lagrange multiplier satisfying the 
constraint as follows: 
 
 ( ) ( ) ( )ˆ ˆ 0.

TLCLS LCLS
k kf X M Xλ = =   (19) 

 
The TLS and the LCLS provide compensated estimation 

results for the uncertain linear measurement equation, 
however, the compensation factors, σ and λ need 
additional computation burden which is a singular value 
decomposition procedure for (17) and a numerical method 
such as root finding for (19), respectively. These additional 
burdens may be an obstacle for real-time implementation. 
Furthermore, as shown in (16) and (18), the compensation 
seems to be focused on the auto-correlation ( ) ( )k T kH H  
rather than the cross-correlation ( ) ( )k T kH v . In order to 
successfully eliminate the estimation errors, (14) and (15), 
and to flee from the burden, the RoLS approach should be 
considered for the localization problem [13].  

 
 
3. Target Localization Algorithm Based on the 

Robust Least Squares 
 
The reasons of the estimation error for the NLS are the 

scale-factor error and the bias error. If the errors can be 
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represented with the available matrix and the predefined 
stochastic information, it is possible to remove from the 
NLS. With this strategy, the RoLS was developed [13]. 
Based on the RoLS, the target localization algorithm can be 
shown the convergence in probability.  

 
Lemma 2: (RoLS based target localization algorithm) 

Given the measurement Eq. (12), the RoLS based target 
localization algorithm is 

 

 
{ }

( ) ( )1

ˆ ( )
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RoLS k T k k
k k

NLS
k k k

X P H Y V

I Xα β−

= −

= − −
          (20) 

 
where { } 1

( ) ( )k T k k
kP H H W

−
= −  and the compensation 

factors are defined as 
 

 { } { }1 1ˆˆ ( ) ( ) ,  ( ) ( )k T k k k T k k
k kH H W H H Vα β

− −
  (21) 

 
where ( )k k T kW E H H⎡ ⎤Δ⎣ ⎦  and ( )k k T kV E H v⎡ ⎤⎣ ⎦  
are obtained as following, from (10) and (11), respectively. 
 
 1 2 1 2,  k k

k kW W W W V V V V= + + = + +  
 

For a real-time application, its recursive formula is 
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Theorem 1: (Convergence in probability of the RoLS 

based target localization algorithm) If the sequence of 
the RDOA measurement noises ( )jr kδ of all sensors 
( 2, , )j n=  are i.i.d. (independent and identically 
distributed) and the estimate of the RoLS based target 
localization algorithm exists due to 1 0kP− >  [13], the 
estimate of the RoLS based target localization algorithm 
converges to the true position in probability. 

 
 ˆ RoLS p

kX X⎯⎯→  
 
Proof: When the target position is fixed kX X=  and 

the sequence of the RDOA measurement noises are i.i.d, 
the true measurement matrix becomes constant matrix: 

kH H=  and the definitions of (9)-(11) are independent 
for time as follows: 
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Therefore, it is obvious that 
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=⎨ ⎬
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Since 1

kP−  is invertible, the inverse function is a 
continuous function [16]. Then, by the continuous mapping 
theorem [17],  

 

 ( ) ( )
1

11 ( ) ( )p lim p lim .
k T k k

T
k
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k

−
−−
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  (26) 
 

Now, the RoLS based target localization can be written as 
 

 { } { }1ˆ ( ) ( )RoLS k T k k k T k k
k k kX P H Y V P k H Y V

k
= − = × −  

 
by the Slutsky’s theorem [18, 19] and (23)-(26), it 

converges to the true position in probability. 
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  ■ 



Ka Hyung Choi, Won-Sang Ra, Jin Bae Park and Tae Sung Yoon  

 

611

Remark 3. It is easily seen that the singular value in (16) 
and the Lagrange multiplier in (18) are similar to the scale-
factor error correction term, kW of the RoLS based target 
localization algorithm (20). kW  corrects ( ) ( )k T kH HΔ Δ  
from the auto-correlation term ( ) ( )k T kH H . However, 
differently with the TLS and the LCLS, the RoLS corrects 
not only the auto-correlation term but also the cross-
correlation one by kV . For this reason, the RoLS based 
target localization algorithm can be regarded more general 
solution in view of the filter structure for error 
compensation. 

 
 

4. Simulation Results 
 
The simulations, we prove the performance of the RoLS 

based target localization algorithm. It is compared with the 
TLS, LCLS, and NLS algorithm. We assume the sensor 
network as shown in Fig. 1 which contains 6 sensor nodes 
and provides the RDOA measurements. The positions of 
nodes are same with the assumption in Fig. 2. The iteration 
number of simulations is 100 and the simulation is 
performed to 500 steps at every iteration. 

 
4.1 Performance comparison for the RDOA noise 

variance at a fixed position 
 
To check the performance degradation by low SNR of 

the RDOA measurement, variances of the measurement 
noise are set from 1000[m2] to 24000[m2]. The target 
position is placed at 60 [deg] and 1500[m] far from the 
network’s center. The variances are not enough small 
differently from [14] and [18] whose the bias kb  were 
neglected. In low SNR condition, the bias may affect the 
estimation performance. In this reason, under the 
assumption that the variance is given information, all of 
algorithms are derived with the bias removed Eq. (12).  

The mean error results of each estimation method are 
represented in Fig. 3. The errors are increased rapidly 
along the degradation of the SNR condition. The TLS and 
LCLS show more compensated results than the NLS but 
they still have mean error even though the bias of the 
measurement noise is removed. On the other hand, the 
results of the RoLS seems to guarantee Theorem 1. 
Therefore, as mentioned in Remark 3, it is thought that the 
compensation method of the RoLS for the scale-factor 
error and the bias error is more general approach for the 
target localization problem using the RDOA measurements. 

 
4.2 Performance comparison over the whole azimuth 

 
As shown in Fig. 2, estimation performance can be affected 

by the target position in the sensor network. To check the 
performance over the whole azimuth, the target positions are 
selected 1500[m] far from the center of the sensor network, 
(3000, 3000), and the performance is checked for every 10 

degrees around its center. In this simulation, the variance of 
the RDOA measurement is set to 20000[m2]. Estimation 
results of the target position over the whole azimuth as shown 
in Fig. 4 and Fig. 5 which represent mean error and root mean 
square error (RMSE), respectively.  
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Fig. 3. Mean error of estimated target position for the noise 
variance of the RDOA measurements 

 
The superiority of the mean error performance of the 

RoLS is also remarkable in whole azimuth simulation. The 
mean error result of the NLS shows the effect of the 
performance variation along the target location. It seems 
that the estimation error of the NoLS is dependent on the 
geometry of the sensor network. (It is worthy that the 
relation between the geometry and the estimation error is 
studied as future work.) The mean errors of the TLS and 
the LCLS also have affected by the target location but the 
RoLS shows relatively unified performance due to the 
small mean error. However, the RoLS does not guarantee 
the minimum RMSE as shown Fig. 5. It is because that, in 
this simulation, the cost function of the RoLS is applied the 
identical weight which is differently from the RWLS in 
[20]. This difference is described in Table 1. Therefore, by 
applying the optimal weight matrix, the RMSE 
performance of the RoLS method can be improved.  
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Table 1. Comparison of the RoLS and the RWLS 

Cost 
function 

{ } { }
( ) ( )

( ) ( )

             

TRoLS k k k k k k
k k k

T TT k k k
k k k k

J Y b H X Y b H X

X W X V X X V

= − − − −

− + +RoLS 
Compen-

sation 
factors 

,   T T
k k k k k kW E H H V E H v⎡ ⎤ ⎡ ⎤= Δ Δ = Δ⎣ ⎦ ⎣ ⎦  

Cost 
function 

{ } { }
( ) ( )

( ) ( )

             

TWRLS k k k k k k k
k k k

T TT k k k
k k k k

J Y b H X Y b H X

X W X V X X V

= − − Λ − −

− + +RWLS 
in [20] Compen-

sation 
factors 

,   T T
k k k k k k k kW E H H V E H v⎡ ⎤ ⎡ ⎤= Δ Λ Δ = Δ Λ⎣ ⎦ ⎣ ⎦  

 
 

5. Conclusion 
 
The RoLS based target localization algorithm has been 

proposed using the uncertain linear measurement equation 
which is given the stochastic information of the RDOA 
measurements. Since the linear estimator suffers from the 
estimation error due to the uncertainty caused by the 
RDOA measurement noise, the newly developed RoLS 

algorithm has been applied to compensate the estimation 
error by using the stochastic information. For aspects of the 
estimation error compensation, the proposition has more 
generous form than the TLS and the LCLS estimators and 
can be shown the convergence in probability with 
mathematical proof. In the simulation, the performance of 
the target localization is affected by the SNR of the 
measurement and the target’s position in the sensor 
network but the proposition shows superior performance 
than that of the TLS, LCLS, and NLS. Owing to the 
significantly small mean error characteristic and its 
recursive form, the proposition will be utilizable for real-
time and low cost localization system. 
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Fig. 4. Mean error of estimated target position over the whole azimuth 
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