• Title/Summary/Keyword: Pseudo Point

Search Result 174, Processing Time 0.028 seconds

Integrated Algorithm for Identification of Long Range Artillery Type and Impact Point Prediction With IMM Filter (IMM 필터를 이용한 장사정포의 탄종 분리 및 탄착점 예측 통합 알고리즘)

  • Jung, Cheol-Goo;Lee, Chang-Hun;Tahk, Min-Jea;Yoo, Dong-Gil;Sohn, Sung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.531-540
    • /
    • 2022
  • In this paper, we present an algorithm that identifies artillery type and rapidly predicts the impact point based on the IMM filter. The ballistic trajectory equation is used as a system model, and three models with different ballistic coefficient values are used. Acceleration was divided into three components of gravity, air resistance, and lift. And lift acceleration was added as a new state variable. The kinematic condition that the velocity vector and lift acceleration are perpendicular was used as a pseudo-measurement value. The impact point was predicted based on the state variable estimated through the IMM filter and the ballistic coefficient of the model with the highest mode probability. Instead of the commonly used Runge-Kutta numerical integration for impact point prediction, a semi-analytic method was used to predict impact point with a small amount of calculation. Finally, a state variable initialization method using the least-square method was proposed. An integrated algorithm including artillery type identification, impact point prediction and initialization was presented, and the validity of the proposed method was verified through simulation.

Development of Reliability Analysis Procedures for Repairable Systems with Interval Failure Time Data and a Related Case Study (구간 고장 데이터가 주어진 수리가능 시스템의 신뢰도 분석절차 개발 및 사례연구)

  • Cho, Cha-Hyun;Yum, Bong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.859-870
    • /
    • 2011
  • The purpose of this paper is to develop reliability analysis procedures for repairable systems with interval failure time data and apply the procedures for assessing the storage reliability of a subsystem of a certain type of guided missile. In the procedures, the interval failure time data are converted to pseudo failure times using the uniform random generation method, mid-point method or equispaced intervals method. Then, such analytic trend tests as Laplace, Lewis-Robinson, Pair-wise Comparison Nonparametric tests are used to determine whether the failure process follows a renewal or non-renewal process. Monte Carlo simulation experiments are conducted to compare the three conversion methods in terms of the statistical performance for each trend test when the underlying process is homogeneous Poisson, renewal, or non-homogeneous Poisson. The simulation results show that the uniform random generation method is best among the three. These results are applied to actual field data collected for a subsystem of a certain type of guided missile to identify its failure process and to estimate its mean time to failure and annual mean repair cost.

A study on the Production and distribution planning using a genetic algorithm (유전 알고리즘을 이용한 생산 및 분배 계획)

  • 정성원;장양자;박진우
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.253-256
    • /
    • 2001
  • Today's rapid development in the computer and network technology makes the environment which enables the companies to consider their decisions on the wide point of view and enables the software vendors to make the software packages to help these decisions. To make these software packages, many algorithms should be developed. The production and distribution planning problem belongs to those problems that industry manufacturers daily face in organizing their overall production plan. However, this combinatorial optimization problem can not be solved optimally in a reasonable time when large instances are considered. This legitimates the search for heuristic techniques. As one of these heuristic techniques, genetic algorithm has been considered in many researches. A standard genetic algorithm is a problem solving method that apply the rules of reproduction, gene crossover, and mutation to these pseudo-organisms so those organisms can Pass beneficial and survival-enhancing traits to new generation. This standard genetic algorithm should not be applied to this problem directly because when we represent the chromosome of this problem, there may exist high epitasis between genes. So in this paper, we proposed the hybrid genetic algorithm which turns out to better result than standard genetic algorithms

  • PDF

Estimation of Vibration Level Inside an Engine Based on Rigid Body Theory and Measurement Technology (강체 운동 해석 및 실험을 통한 엔진 내부 진동 예측에 관한 연구)

  • Kim, Byung-Hyun;Park, Jong-Ho;Kim, Eui-Yeol;Lee, Sang-Kwon;Kim, Tae-Jeong;Heo, Jeong-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1043-1050
    • /
    • 2011
  • This paper presents practical results for the estimation of vibration level inside a powertrain based on the rigid body theory and measurement. The vibration level of inside powertrain has been used for the calculation of excitation force of an engine indirectly. However it was difficult to estimate or measure the vibration level inside of a powertrain when a powertrain works on the driving condition of a vehicle. To do this work, the rigid body theory is employed. At the first, the vibration on the surface of a powertrain is measured and its results are secondly used for the estimation the vibration level inside of powertrain together with rigid body theory. Also did research on how to decrease the error rate when the rigid body theory is applied. This method is successfully applied to the estimation of the vibration level on arbitrary point of powertrain on the driving condition at the road.

Adsorption Characteristics of As(V) onto Cationic Surfactant-Modified Activated Carbon

  • Choi, Hyun-Doc;Park, Sung-Woo;Ryu, Byung-Gon;Cho, Jung-Min;Kim, Kyung-Jo;Baek, Ki-Tae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.153-157
    • /
    • 2009
  • Arsenic at abandoned mine sites has adversely affected human health in Korea. In this study, the feasibility of using cationic surfactant-modified activated carbon (MAC) to remove As(V) was evaluated in terms of adsorption kinetics, adsorption isotherms, and column experiments. The adsorption of As(V) onto MAC was satisfactorily simulated by the pseudo-second-order kinetics model and Langmuir isotherm model. In column experiments, the breakthrough point of AC was 28 bed volumes (BV), while that of MAC increased to 300 BV. The modification of AC using cationic surfactant increased the sorption rate and sorption capacity with regard to As(V). As a result, MAC is a promising adsorbent for treating As(V) in aqueous streams.

The Geometric Modeling for 3D Information of X-ray Inspection (3차원 정보 제공을 위한 X-선 검색장치의 기하학적 모델링)

  • Lee, Heung-Ho;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1151-1156
    • /
    • 2013
  • In this study, to clearly establish the concept of a geometric modeling I apply for the concept of Pushbroom, limited to two-dimensional radiation Locator to provide a three-dimensional information purposes. Respect to the radiation scanner Pushbroom modeling techniques, geometric modeling method was presented introduced to extract three-dimensional information as long as the rotational component of the Gamma-Ray Linear Pushbroom Stereo System, introduced the two-dimensional and three-dimensional spatial information in the matching relation that can be induced. In addition, the pseudo-inverse matrix by using the conventional least-squares method, GCP(Ground Control Point) to demonstrate compliance by calculating the key parameters. Projection transformation matrix is calculated for obtaining three-dimensional information from two-dimensional information can be used as the primary relationship, and through the application of a radiation image matching technology will make it possible to extract three-dimensional information from two-dimensional X-ray imaging.

An Adaptive Frequency Hopping Method in the Bluetooth Baseband (블루투스 베이스밴드에서의 적응 주파수 호핑 방식)

  • Moon Sangook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.237-241
    • /
    • 2005
  • In Bluetooth version 1.0, the frequency hopping algorithm was such that there was one piconet, using a specific frequency, resolving the frequency depending on the part of the digits of the device clock and the Bluetooth address. Basic pattern was a kind of a round-robin using 79 frequencies in the ISM band. At this point, a problem occurs if there were more than two devices using the same frequency within specific range. In this paper, we proposed a software-based adaptive frequency hopping method so that more than two wireless devices can stay connected without frequency crash. Suggested method was implemented with HDL(Hardware Description Language) and automatically synthesized and laid out. Implemented adaptive frequency hopping circuit operated well in 24MHz correctly.

Defect Chemistry of the Mixed Conducting Cage Compound Ca12Al14O33

  • Janek, J.;Lee, D.K.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • The electrical transport properties of mayenite ($Ca_{12}Al_{14}O_{33}$ or $12CaO{\cdot}7Al_2O_3$; mostly abbreviated as $C_{12}A_7$) can be controlled in a wide range by varying the oxygen deficiency: At high temperatures mayenite becomes either an oxygen solid electrolyte, a mixed ionic/electronic conductor or an inorganic electride with metal-like properties upon chemical reduction (removing oxygen). The underlying defect chemistry can be understood on the basis of a relatively simple model-despite the complex cage structure: A point defect model based on the assumption that the framework $[Ca_{12}Al_{14}O_{32}]^{2+}$ acts as a pseudo-donor describes well the high temperature transport properties. It accounts for the observed conductivity plateau at higher oxygen activities and also describes the experimentally observed oxygen activity dependence of the electronic conductivity with -1/4 slope at temperatures between 800 and $1000^{\circ}C$. Doping effects in mayenite are still not well explored, and we review briefly the existing data on doping by different elements. Hydration of mayenite plays a crucial role, as Mayenite is hygroscopic, which may be a major obstacle for technical applications.

A prolate spheroidal head modeling of head related transfer function based on ray tracing formula (선추적공식을 이용한 머리전달함수의 회전타원체 형상 모델링)

  • Jo, Hyun;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.934-938
    • /
    • 2008
  • To customize individual characteristics of HRTF, a spherical model has been used for structural modeling technique. A pseudo-code of prolate spheroidal HRTF caused by incident acoustic point source is already developed, and it can be used a head shadow filter for structural modeling of HRTF. In this research, to see the necessity and efficiency of spheroidal head modeling, ITD optimization is performed on CIPIC HRTF database. From given cost function, ITD-optimized spheroidal head model, whose ITD information is the most matched version of measured ITD information, is found by varying head parameters subject by subject. By comparing results of ITD-optimized spheroids and ITD-optimized spheres, we concluded that a spherical head model is more efficient way of generating head shadow effect than a spheroidal head model does.

  • PDF

Structural damage detection in continuum structures using successive zooming genetic algorithm

  • Kwon, Young-Doo;Kwon, Hyun-Wook;Kim, Whajung;Yeo, Sim-Dong
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.135-146
    • /
    • 2008
  • This study utilizes the fine-tuning and small-digit characteristics of the successive zooming genetic algorithm (SZGA) to propose a method of structural damage detection in a continuum structure, where the differences in the natural frequencies of a structure obtained by experiment and FEM are compared and minimized using an assumed location and extent of structural damage. The final methodology applied to the structural damage detection is a kind of pseudo-discrete-variable-algorithm that counts the soundness variables as one (perfectly sound) if they are above a certain standard, such as 0.99. This methodology is based on the fact that most well-designed structures exhibit failures at some critical point due to manufacturing error, while the remaining region is free of damage. Thus, damage of 1% (depending on the given standard) or less can be neglected, and the search concentrated on finding more serious failures. It is shown that the proposed method can find out the exact structural damage of the monitored structure and reduce the time and amount of computation.