• Title/Summary/Keyword: Pseudanabaena

Search Result 18, Processing Time 0.019 seconds

Mixotrophic Cultivation of a Native Cyanobacterium, Pseudanabaena mucicola GO0704, to Produce Phycobiliprotein and Biodiesel

  • Kim, Shin Myung;Bae, Eun Hee;Kim, Jee Young;Kang, Jae-Shin;Choi, Yoon-E
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1325-1334
    • /
    • 2022
  • Global warming has accelerated in recent decades due to the continuous consumption of petroleum-based fuels. Cyanobacteria-derived biofuels are a promising carbon-neutral alternative to fossil fuels that may help achieve a cleaner environment. Here, we propose an effective strategy based on the large-scale cultivation of a newly isolated cyanobacterial strain to produce phycobiliprotein and biodiesel, thus demonstrating the potential commercial applicability of the isolated microalgal strain. A native cyanobacterium was isolated from Goryeong, Korea, and identified as Pseudanabaena mucicola GO0704 through 16s RNA analysis. The potential exploitation of P. mucicola GO0704 was explored by analyzing several parameters for mixotrophic culture, and optimal growth was achieved through the addition of sodium acetate (1 g/l) to the BG-11 medium. Next, the cultures were scaled up to a stirred-tank bioreactor in mixotrophic conditions to maximize the productivity of biomass and metabolites. The biomass, phycobiliprotein, and fatty acids concentrations in sodium acetate-treated cells were enhanced, and the highest biodiesel productivity (8.1 mg/l/d) was achieved at 96 h. Finally, the properties of the fuel derived from P. mucicola GO0704 were estimated with converted biodiesels according to the composition of fatty acids. Most of the characteristics of the final product, except for the cloud point, were compliant with international biodiesel standards [ASTM 6761 (US) and EN 14214 (Europe)].

A study of six newly recorded species of cyanobacteria (Cyanophyceae, Cyanophyta) in Korea

  • Song, Mi-Ae;Lee, Ok-Min
    • Journal of Species Research
    • /
    • v.6 no.2
    • /
    • pp.154-162
    • /
    • 2017
  • The aim of this study was to discover and describe new genera and species of cyanobacteria in Korea. Aquatic and aerial algae were collected from various environments in the Han River and Nakdong River watersheds between August 2009 and October 2015. As a result, one genus and six species of cyanobacteria were newly recorded in Korea. The newly recorded genus for Korea was Capsosira; newly recorded species were Capsosira brebissonii, Rivularia minutula, Chamaesiphon amethystinus, Leptolyngbya margaretheana, Pseudanabaena arcuata, and Rhabdoderma lineare.

The Study of Cyanobacterial Flora from Geothermal Springs of Bakreswar, West Bengal, India

  • Debnath, Manojit;Mandal, Narayan Chandra;Ray, Samit
    • ALGAE
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2009
  • Geothermal springs in India, formed as a result of volcanic or tectonic activities, are characterized by high temperature and relatively abundant reduced compounds. These thermal springs are inhabited by characteristic thermophilic organisms including cyanobacteria. Cyanobacteria are among the few organisms that can occupy high temperature aquatic environments including hot springs. In alkaline and neutral hot springs and streams flowing from them cyanobacteria can form thick colourful mats that exhibit banding patterns. The present investigation involves study of mat forming cyanobacterial flora from hot springs located in Bakreswar, West Bengal, India. The important species found are Synechococcus bigranulatus, S. lividus, Gloeocapsa gelatinosa, G. muralis, Phormidium laminosum, P. frigidum, Oscillatoria princes, O. fragilis, Lyngbya lutea, Pseudanabaena sp., Calothrix thermalis, and Fischerella thermalis. Their distribution pattern in relation to physico-chemical parameters of spring water has also been studied. Three cyanobacterial strains of the above mentioned list were grown in culture and their pigment content and nitrogen fixing capacity were also studied. Nitrogen fixing capacities of Calothrix thermalis, Nostoc sp. (isolated in culture) and Fischerella thermalis are 5.14, 0.29, and 2.60 n mole $C_2H_4/{\mu}g$ of Chl-${\alpha}$/hr respectively. Carotenoid : Chlorophyll-${\alpha}$ ratio of four mat samples collected from Kharkunda, Suryakunda, Dudhkunda and bathing pool are 2.45, 1.60, 1.48, and 1.34, respectively. Higher value of Carotenoid : Chlorophyll-${\alpha}$ ratio coincided with higher temperature.

Trait-based algal community assembly associated with Pectinatella magnifica (Bryozoa, Phylactolaemata)

  • Kim, Hyo Gyeom;Lee, Hak Young;Joo, Gea-Jae
    • ALGAE
    • /
    • v.34 no.2
    • /
    • pp.99-109
    • /
    • 2019
  • Habitat-forming species increase spatial complexity and alter local environmental conditions, often facilitating the assembly of plants and animals. We conducted a trait-based approach to algal assemblages associated with the freshwater bryozoan, Pectinatella magnifica. Association with algae leads to the inner bodies of the bryozoans being colored green; this is frequently observed in the large rivers of South Korea. We collected the green-colored gelatinous matrices and phytoplankton from waterbodies of the two main rivers in South Korea. Algal assemblages within the colonies and in the waterbodies were compared using the three diversity indices (richness, diversity, and dominance), and the composition of functional groups (FGs) and morphologically based functional groups (MBFGs) between the colonies within and outside of P. magnifica colonies. The most dominant and common species within the colonies were Oscillatoria kawamurae and Pseudanabaena catenata, both of which were assigned to the same FG (codon S1). Of the algal assemblages within the colonies, the dominance was higher, while the richness and diversity were lower, than those in the waterbodies. There was variation in the compositions of FGs and MBFGs in the waterbodies outside the colonies. Total nitrogen and orthophosphate led to dominance, and were significant factors for the variation in FGs in the waterbodies, whereas there were no such significant factors within the colonies. This trait-based approach to the community structure of associated algae provides the status and habitat gradient of these communities, which are stable, isolated, and consistent with the overgrowth of shade-adapted tychoplanktonic cyanobacteria.

Microbial Change and Fermentation Characteristics during Samjung-Hwan Natural Fermentation (천연발효 경과에 따른 삼정환의 미생물 변화 및 발효특성)

  • Shin, Na Rae;Wang, Jing-Hua;Lim, Dongwoo;Lee, Myeong-Jong;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.15 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • Objectives: Samjung-hwan (SJH), a well-known traditional fermented herb formula recorded in Dongui Bogam, has been commonly used for prolonging life for four hundred years in Eastern Asia. However, fermented SJH has not been investigated in terms of microbial ecology until present time. Methods: SJH was fermented for five weeks and fermentation characteristics during SJH fermentation were performed including pH, acidity and microbial profiling. Also, we measured total polyphenol and total flavonoid contents and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. In order to select starter candidate, several lactic acid bacteria were isolated from fermented SJH. Results: pH of fermented SJH was decreased from 4.7 to 3.0 and acidity was increased from 0.45% to 1.72%. Also, fermented SJH increased antioxidant indicator such as total polyphenol and total flavonoid as well as DPPH free radical scavenging activity. Lactobacillus brevis was increased, Pseudanabaena sp. was decreased, and Lactococcus lactis subsp. lactis was stable during 5-week fermentation of SJH. L. brevis and L. plantarum were isolated from fermented SJH. Conclusions: Fermented SJH for four weeks had optimal effect on antioxidant and fermentation characteristics such as pH, acidity and microbial profile. Further studies are required to develop starter and analyze functional compounds in oder to produce standardized SJH.

Formation of Phytoplankton Community and Occurrences of Odorous Compounds for Sediment Incubation by Water Temperature (퇴적층의 온도별 배양에 따른 조류군집 형성과 이취미물질 발생 특성)

  • Kim, Yong-Jin;Youn, Seok-Jea;Kim, Hun-Nyun;Hwang, Moon-young;Park, Jin-rak;Lee, Byoung-cheun;Lee, Jae-Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.460-467
    • /
    • 2015
  • We analyzed the formation of phytoplankton community and the occurences of odorus compound from benthic cyanobacteria in North, South Han-River, Paldang-Lake and Kyeongan-Stream sediments. Sediments were incubated in different water temperature. Akinetes were found (0~500 cells/g) with the highest number on sediment in Yangsoo railroad bridge (YC). The result showed that Anabaena ranged between $0.02{\sim}0.53{\times}10^3cells/mL$ in Sambong (SB), YC, Mukhyen-Stream (MS), Paldang-Lake (P2) and Kyeongan-Stream (KK). The total 68 taxa of phytoplankton were observed during the incubation period. A standing crop of phytoplankton was in the range of $0.13{\sim}8.97{\times}10^3cells/mL$ and Microcystis appeared in SB, YC, P2 and KK sites with $20{\sim}25^{\circ}C$ temperature. In South Han-River (P3), Oscillatoria tenuis was dominant at $25^{\circ}C$ temperature. The concentration of geosmin was the highest in SB-$15^{\circ}C$ (25.5 ng/L), and the concentration of 2-MIB was the highest in P3-$25^{\circ}C$ (286.8 ng/L). Odorous compounds were detected in all the temperature conditions from each site. Our results indicate that the dominant benthic cyanobacteria (O. tenuis, O. limosa, Phormidium tenue and Pseudanabaena limnetica) have high correlation with the occurrence odorous compounds and 2-MIB.

Detection of Geosmin Production Capability Using geoA Gene in Filamentous Cyanobacteria (Nostocales, Oscillatoriales) Strains (geoA 유전자를 이용한 사상형 남조류(Nostocales, Oscillatoriales)의 Geosmin 생성능 검출)

  • Ryu, Hui-Seong;Shin, Ra-Young;Seo, Kyung-Ae;Lee, Jung-Ho;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.661-668
    • /
    • 2018
  • Geosmin is volatile metabolites produced by a range of filamentous cyanobacteria which causes taste and odor problems in drinking water. Molecular ecological methods which target biosynthetic genes (geoA) are widely adopted to detect geosmin-producing cyanobacteria. The aim of this study was to investigate the potential production capability of 8 strains isolated from the Nakdong River. Ultimately, a suggestion for a genetical monitoring tool for the identification of geosmin producers in domestic waters was to be made. Geosmin was detected using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS) in two strains of Dolichospermum plactonicum (DGUC006, DGUC012) that were cultured for 28 day. The highest concentrations during the experiment period was $17,535ngL^{-1}$ and $14,311ngL^{-1}$ respectively. Additionally, geoA genes were amplified using two primers (geo78F/971R and geo78F/982R) from strains shown to produce geosmin, while amplification products were not detected in any of non-producing strains. PCR product (766 bp) was slightly shorter than the expected size for geosmin producers. According to the BLAST analysis, amplified genes were at nucleotide level with Anabaena ucrainica (HQ404996, HQ404997), Dolichospermum planctonicum (KM13400) and Dolichospermum ucrainicum (MF996872) between 99 ~ 100 %. Both strains were thus confirmed as potential geosmin-producing species. We concluded that the molecular method of analysis was a useful tool for monitoring potential cyanobacterial producers of geosmin.

Cyanobacteria Community and Growth Potential Test in Sediment of Lake Paldang (팔당호 퇴적층 남조류의 군집과 남조류 성장잠재성 분석)

  • Kim, Yong-Jin;Baek, Jun-Soo;Youn, Seok-Jea;Kim, Hun-Nyun;Lee, Byoung-cheun;Kim, Gueeda;Park, Songeun;You, Kyung A;Lee, Jae-Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.261-270
    • /
    • 2016
  • We analyzed cyanobacterial community including akinete, resting cell, and benthic cyanobacteria in sediment of Bukhan, Namhan-River, Paldang-Lake, and Kyeongan-Stream and compared the physicochemical factors for water and pore water. We also performed cyanobacteria growth potential test through incubating sediment. As a result of physicochemical analysis, the concentrations of nutrients were similar for each depth of Bukhan-River. For Namhan-River and Lake Paldang sites, the concentrations of TP and DTN in bottom and deep water had higher levels. DTN in water body composed of NO3-N(73%) while DTN in pore water composed of NH3-N(77.8%). Benthic cyanobacteria in the sediment such as Oscillatoria tenuis, O. limosa, Phormidium tenue, Pseudanabaena limnetica, and Lyngbya sp. were dominant (between 0.0∼243.3×103 cells/g, w/w). Cell densities of cyanobacteria in sediment depth of 0∼2 cm in most sites were higher compared to those in other depths. The cell density of cyanobacteria in sediment correlated with pH, conductivity, BOD5, TP, DTP, and chl. a. Increased phytoplankton and organic matters were found to be able to inhibit the growth of benthic cyanobacteria. Results of cyanobacteria growth potential test after incubating sediment revealed that harmful cyanobacteria (Anabaena, Aphanizomenon, Microcystis, and Oscillatoria) appeared at 7 days post culturing. Base on these results, the methods used in this study are considered to be able to determine the appearance of harmful cyanobacteria.