• Title/Summary/Keyword: Proximal Policy Optimization Algorithm

Search Result 13, Processing Time 0.031 seconds

An Efficient Load Balancing Scheme for Gaming Server Using Proximal Policy Optimization Algorithm

  • Kim, Hye-Young
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.297-305
    • /
    • 2021
  • Large amount of data is being generated in gaming servers due to the increase in the number of users and the variety of game services being provided. In particular, load balancing schemes for gaming servers are crucial consideration. The existing literature proposes algorithms that distribute loads in servers by mostly concentrating on load balancing and cooperative offloading. However, many proposed schemes impose heavy restrictions and assumptions, and such a limited service classification method is not enough to satisfy the wide range of service requirements. We propose a load balancing agent that combines the dynamic allocation programming method, a type of greedy algorithm, and proximal policy optimization, a reinforcement learning. Also, we compare performances of our proposed scheme and those of a scheme from previous literature, ProGreGA, by running a simulation.

Cloud Task Scheduling Based on Proximal Policy Optimization Algorithm for Lowering Energy Consumption of Data Center

  • Yang, Yongquan;He, Cuihua;Yin, Bo;Wei, Zhiqiang;Hong, Bowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1877-1891
    • /
    • 2022
  • As a part of cloud computing technology, algorithms for cloud task scheduling place an important influence on the area of cloud computing in data centers. In our earlier work, we proposed DeepEnergyJS, which was designed based on the original version of the policy gradient and reinforcement learning algorithm. We verified its effectiveness through simulation experiments. In this study, we used the Proximal Policy Optimization (PPO) algorithm to update DeepEnergyJS to DeepEnergyJSV2.0. First, we verify the convergence of the PPO algorithm on the dataset of Alibaba Cluster Data V2018. Then we contrast it with reinforcement learning algorithm in terms of convergence rate, converged value, and stability. The results indicate that PPO performed better in training and test data sets compared with reinforcement learning algorithm, as well as other general heuristic algorithms, such as First Fit, Random, and Tetris. DeepEnergyJSV2.0 achieves better energy efficiency than DeepEnergyJS by about 7.814%.

A Study about the Usefulness of Reinforcement Learning in Business Simulation Games using PPO Algorithm (경영 시뮬레이션 게임에서 PPO 알고리즘을 적용한 강화학습의 유용성에 관한 연구)

  • Liang, Yi-Hong;Kang, Sin-Jin;Cho, Sung Hyun
    • Journal of Korea Game Society
    • /
    • v.19 no.6
    • /
    • pp.61-70
    • /
    • 2019
  • In this paper, we apply reinforcement learning in the field of management simulation game to check whether game agents achieve autonomously given goal. In this system, we apply PPO (Proximal Policy Optimization) algorithm in the Unity Machine Learning (ML) Agent environment and the game agent is designed to automatically find a way to play. Five game scenario simulation experiments were conducted to verify their usefulness. As a result, it was confirmed that the game agent achieves the goal through learning despite the change of environment variables in the game.

A Study on Load Distribution of Gaming Server Using Proximal Policy Optimization (Proximal Policy Optimization을 이용한 게임서버의 부하분산에 관한 연구)

  • Park, Jung-min;Kim, Hye-young;Cho, Sung Hyun
    • Journal of Korea Game Society
    • /
    • v.19 no.3
    • /
    • pp.5-14
    • /
    • 2019
  • The gaming server is based on a distributed server. In order to distribute workloads of gaming servers, distributed gaming servers apply some algorithms which divide each of gaming server's workload into balanced workload among the gaming servers and as a result, efficiently manage response time and fusibility of server requested by the clients. In this paper, we propose a load balancing agent using PPO(Proximal Policy Optimization) which is one of the methods from a greedy algorithm and Policy Gradient which is from Reinforcement Learning. The proposed load balancing agent is compared with the previous researches based on the simulation.

Flight Trajectory Simulation via Reinforcement Learning in Virtual Environment (가상 환경에서의 강화학습을 이용한 비행궤적 시뮬레이션)

  • Lee, Jae-Hoon;Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • The most common way to control a target point using artificial intelligence is through reinforcement learning. However, it had to process complicated calculations that were difficult to implement in order to process reinforcement learning. In this paper, the enhanced Proximal Policy Optimization (PPO) algorithm was used to simulate finding the planned flight trajectory to reach the target point in the virtual environment. In this paper, we simulated how this problem was used to find the planned flight trajectory to reach the target point in the virtual environment using the enhanced Proximal Policy Optimization(PPO) algorithm. In addition, variables such as changes in trajectory, effects of rewards, and external winds are added to determine the zero conditions of external environmental factors on flight trajectory learning, and the effects on trajectory learning performance and learning speed are compared. From this result, the simulation results have shown that the agent can find the optimal trajectory in spite of changes in the various external environments, which will be applicable to the actual vehicle.

A Study on Asset Allocation Using Proximal Policy Optimization (근위 정책 최적화를 활용한 자산 배분에 관한 연구)

  • Lee, Woo Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.645-653
    • /
    • 2022
  • Recently, deep reinforcement learning has been applied to a variety of industries, such as games, robotics, autonomous vehicles, and data cooling systems. An algorithm called reinforcement learning allows for automated asset allocation without the requirement for ongoing monitoring. It is free to choose its own policies. The purpose of this paper is to carry out an empirical analysis of the performance of asset allocation strategies. Among the strategies considered were the conventional Mean- Variance Optimization (MVO) and the Proximal Policy Optimization (PPO). According to the findings, the PPO outperformed both its benchmark index and the MVO. This paper demonstrates how dynamic asset allocation can benefit from the development of a reinforcement learning algorithm.

PGA: An Efficient Adaptive Traffic Signal Timing Optimization Scheme Using Actor-Critic Reinforcement Learning Algorithm

  • Shen, Si;Shen, Guojiang;Shen, Yang;Liu, Duanyang;Yang, Xi;Kong, Xiangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4268-4289
    • /
    • 2020
  • Advanced traffic signal timing method plays very important role in reducing road congestion and air pollution. Reinforcement learning is considered as superior approach to build traffic light timing scheme by many recent studies. It fulfills real adaptive control by the means of taking real-time traffic information as state, and adjusting traffic light scheme as action. However, existing works behave inefficient in complex intersections and they are lack of feasibility because most of them adopt traffic light scheme whose phase sequence is flexible. To address these issues, a novel adaptive traffic signal timing scheme is proposed. It's based on actor-critic reinforcement learning algorithm, and advanced techniques proximal policy optimization and generalized advantage estimation are integrated. In particular, a new kind of reward function and a simplified form of state representation are carefully defined, and they facilitate to improve the learning efficiency and reduce the computational complexity, respectively. Meanwhile, a fixed phase sequence signal scheme is derived, and constraint on the variations of successive phase durations is introduced, which enhances its feasibility and robustness in field applications. The proposed scheme is verified through field-data-based experiments in both medium and high traffic density scenarios. Simulation results exhibit remarkable improvement in traffic performance as well as the learning efficiency comparing with the existing reinforcement learning-based methods such as 3DQN and DDQN.

Reinforcement learning-based control with application to the once-through steam generator system

  • Cheng Li;Ren Yu;Wenmin Yu;Tianshu Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3515-3524
    • /
    • 2023
  • A reinforcement learning framework is proposed for the control problem of outlet steam pressure of the once-through steam generator(OTSG) in this paper. The double-layer controller using Proximal Policy Optimization(PPO) algorithm is applied in the control structure of the OTSG. The PPO algorithm can train the neural networks continuously according to the process of interaction with the environment and then the trained controller can realize better control for the OTSG. Meanwhile, reinforcement learning has the characteristic of difficult application in real-world objects, this paper proposes an innovative pretraining method to solve this problem. The difficulty in the application of reinforcement learning lies in training. The optimal strategy of each step is summed up through trial and error, and the training cost is very high. In this paper, the LSTM model is adopted as the training environment for pretraining, which saves training time and improves efficiency. The experimental results show that this method can realize the self-adjustment of control parameters under various working conditions, and the control effect has the advantages of small overshoot, fast stabilization speed, and strong adaptive ability.

Design and Implementation of Reinforcement Learning Agent Using PPO Algorithim for Match 3 Gameplay (매치 3 게임 플레이를 위한 PPO 알고리즘을 이용한 강화학습 에이전트의 설계 및 구현)

  • Park, Dae-Geun;Lee, Wan-Bok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2021
  • Most of the match-3 puzzle games supports automatic play using the MCTS algorithm. However, implementing reinforcement learning agents is not an easy job because it requires both the knowledge of machine learning and the way of complex interactions within the development environment. This study proposes a method in which we can easily design reinforcement learning agents and implement game play agents by applying PPO(Proximal Policy Optimization) algorithms. And we could identify the performance was increased about 44% than the conventional method. The tools we used are the Unity 3D game engine and Unity ML SDK. The experimental result shows that agents became to learn game rules and make better strategic decisions as experiments go on. On average, the puzzle gameplay agents implemented in this study played puzzle games better than normal people. It is expected that the designed agent could be used to speed up the game level design process.

Drone Obstacle Avoidance Algorithm using Camera-based Reinforcement Learning (카메라 기반 강화학습을 이용한 드론 장애물 회피 알고리즘)

  • Jo, Si-hun;Kim, Tae-Young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.63-71
    • /
    • 2021
  • Among drone autonomous flight technologies, obstacle avoidance is a very important technology that can prevent damage to drones or surrounding environments and prevent danger. Although the LiDAR sensor-based obstacle avoidance method shows relatively high accuracy and is widely used in recent studies, it has disadvantages of high unit price and limited processing capacity for visual information. Therefore, this paper proposes an obstacle avoidance algorithm for drones using camera-based PPO(Proximal Policy Optimization) reinforcement learning, which is relatively inexpensive and highly scalable using visual information. Drone, obstacles, target points, etc. are randomly located in a learning environment in the three-dimensional space, stereo images are obtained using a Unity camera, and then YOLov4Tiny object detection is performed. Next, the distance between the drone and the detected object is measured through triangulation of the stereo camera. Based on this distance, the presence or absence of obstacles is determined. Penalties are set if they are obstacles and rewards are given if they are target points. The experimennt of this method shows that a camera-based obstacle avoidance algorithm can be a sufficiently similar level of accuracy and average target point arrival time compared to a LiDAR-based obstacle avoidance algorithm, so it is highly likely to be used.