• 제목/요약/키워드: Proton concentration

검색결과 219건 처리시간 0.036초

An Investigation of the Environment of Some Aromatic Alcohol Solubilized Aqueous Ionic Micellar Solutions by Proton Magnetic Resonance Spectroscopy

  • Chung, Jong-Jae;Kang, Jung-Bu;Lee, Kyung-Hee;Seo, Byung-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권3호
    • /
    • pp.198-204
    • /
    • 1994
  • Chemical shifts in aqueous sodium dodecylsulfate(SDS) micellar solution solublizing phenol, catechol, resorcinol, hydroquinone have been measured to investigate solubilization properties. Proton nuclear magnetic resonance frequencies of solubilizates as well as those of the ${\alpha}$-methylene, middle methylene and terminal methyl of SDS shift linearly as a function of solubilizate concentration. From the plots of observed chemical shift (v) vs solubilizate concentration, slope (a) and solubilizate free chemical shift ($v_0$) are obtained. They are very informative to solubilization site of the systems. Catechol and phenol solubilized SDS and catechol solubilized dodecylpyridinium chloride(DPC), dodecyltrimethylammonium bromide(DTAB) systems are studied using the same method to compare head group effect and middle methylene proton signal splitting. It is proposed that phenol and catechol are inserted into micellar interior and the number of methylenes assigned to the higher field peaks is 5.0${\pm}$0.5.

Preparation and Characterization of Proton Conducting Membranes by Blending PVC-g-PHEA and PVA

  • Koh, Jong-Kwan;Choi, Jin-Kyu;Seo, Jin-Ah;Zeng, Xiaolei;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • 제11권1호
    • /
    • pp.1-7
    • /
    • 2009
  • This work reports the preparation of proton conductive crosslinked polymer electrolyte membranes by blending poly(vinyl chloride)-g-poly(hydroxyl ethyl acrylate) (PVC-g-PHEA) and poly(vinyl alcohol) (PVA). The PHEA chains of the graft copolymer were crosslinked with PVA using sulfosuccinic acid (SA) via the esterification reaction between -OH of polymer matrix and -COOH of SA. The PVC-g-PHEA graft copolymer was synthesized via atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC backbones. Ion exchange capacity (IEC) continuously increased with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. However, the water uptake increased up to 20.0 wt% of SA concentration above which it decreased monotonically. The membrane exhibited a maximum proton conductivity of 0.026 S/cm at 20.0 wt% of SA concentration, which is presumably due to competitive effect between the increase of ionic sites and the crosslinking reaction.

5-MeV Proton-irradiation characteristics of AlGaN/GaN - on-Si HEMTs with various Schottky metal gates

  • Cho, Heehyeong;Kim, Hyungtak
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.484-487
    • /
    • 2018
  • 5 MeV proton-irradiation with total dose of $10^{15}/cm^2$ was performed on AlGaN/GaN-on-Si high electron mobility transistors (HEMTs) with various gate metals including Ni, TaN, W, and TiN to investigate the degradation characteristics. The positive shift of pinch-off voltage and the reduction of on-current were observed from irradiated HEMTs regardless of a type of gate materials. Hall and transmission line measurements revealed the reduction of carrier mobility and sheet charge concentration due to displacement damage by proton irradiation. The shift of pinch-off voltage was dependent on Schottky barrier heights of gate metals. Gate leakage and capacitance-voltage characteristics did not show any significant degradation demonstrating the superior radiation hardness of Schottky gate contacts on GaN.

Transfer of Electronic Excitation Energy in Poltstyrene Films Doped with an Intramolecular Proton Transfer Compound

  • 강태종;김학진;정진갑
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권7호
    • /
    • pp.616-621
    • /
    • 1996
  • The transfer of excitation energy from solvent to solute in polystyrene films doped with 2-(2'-hydroxyphenyl)benzothiazole (HBT) which undergoes intramolecular proton transfer in excited electronic state has been studied by employing steady state and time-resolved fluorescence measurements. The degree of Forster overlap between donor and acceptor molecule in this system is estimated to be moderate. Energy transfer efficiency increases with solute concentration at low concentration range and levels off at high concentration. It is observed that the excimer form of polystyrene is largely involved in energy transfer process. Photostability of HBT in polystyrene to UV light is also investigated to get insight into the long wavelength absorption band of HBT which was observed upon electron radiation.

$SrCe_{0.95}Yb_{0.05}O_3$의 결함엄개와 전기전도 특성 (Defect Structure and Electrical Conductivities of $SrCe_{0.95}Yb_{0.05}O_3$)

  • 최정식;이도권;유한일
    • 한국세라믹학회지
    • /
    • 제37권3호
    • /
    • pp.271-279
    • /
    • 2000
  • 5 m/o Yb-doped SrCeO3 proton conductor was prepared by a solid state reaction method and its total electriccal conductivity measured as a function of both oxygen partial pressure and water vapor partial pressure in the temperature range of 500~100$0^{\circ}C$. From the total conductivity have been deconvoluted the partial conductivities of oxide ions, protons, and holes, respectively, on the basis of the defect model proposed. The equilibrium constant of hydrogen-dissolution reaction, proton concentration, and mobilities of oxygen vacancies and protons have subsequently been evaluated. It is verified that SrCe1-xYbxO3 is a mixed conductor of holes, protons and oxide ions and the proton conduction prevails as temperature decreases and water vapor pressure increases. The heat of water dissolution takes a representative value of $\Delta$HoH=-(140$\pm$20) kJ/mol-H2O, but tends to be less negative with increasing temperature. Migration enthalpies of proton and oxygen vacancy are extracted as 0.83$\pm$0.10 eV and 0.81$\pm$0.01 eV, respectively.

  • PDF

Preparation and Characterization of Proton Conducting Composite Membranes From P(VDF-CTFE)-g-PSPMA Graft Copolymer and Heteropolyacid

  • Seo, Jin-Ah;Roh, Dong-Kyu;Koh, Jong-Kwan;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • 제10권1호
    • /
    • pp.20-25
    • /
    • 2008
  • Proton conducting composite membranes were prepared by solution blending of poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-poly(sulfopropyl methacrylate) (P(VDF-CTFE)-g-PSPMA) graft copolymer and heteropolyacid (HPA). The P(VDF-CTFE)-g-PSPMA graft copolymer was synthesized by atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of P(VDF-CTFE). FT-IR spectroscopy revealed that HPA nanoparticles were incorporated into the graft copolymer via hydrogen bonding interactions. The water uptake of membranes continuously decreased with increasing HP A concentration up to 45wt%, after which it slightly increased. It is presumably due to the decrease in number of water absorption sites due to hydrogen bonding interaction between the HP A particles and the polymer matrix. The proton conductivity of membranes increased with increasing HPA concentration up to 45wt%, resulting from both the intrinsic conductivity of HP A particles and the enhanced acidity of the sulfonic acid of the graft copolymer.

Thermal and Flow Analysis in a Proton Exchange Membrane Fuel Cell

  • Jung, Hye-Mi;Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1358-1370
    • /
    • 2003
  • The effects of anode, cathode, and cooling channels for a Proton Exchange Membrane Fuel Cell (PEMFC) on flow fields have been investigated numerically. Continuous open-faced fluid flow channels formed in the surface of the bipolar plates traverse the central area of the plate surface in a plurality of passes such as a serpentine manner. The pressure distributions and velocity profiles of the hydrogen, air and water channels on bipolar plates of the PEMFC are analyzed using a two-dimensional simulation. The conservation equations of mass, momentum, and energy in the three-dimensional flow solver are modified to include electro-chemical characteristics of the fuel cell. In our three-dimensional numerical simulations, the operation of electro-chemical in Membrane Electrolyte Assembly (MEA) is assumed to be steady-state, involving multi-species. Supplied gases are consumed by chemical reaction. The distributions of oxygen and hydrogen concentration with constant humidity are calculated. The concentration of hydrogen is the highest at the center region of the active area, while the concentration of oxygen is the highest at the inlet region. The flow and thermal profiles are evaluated to determine the flow patterns of gas supplied and cooling plates for an optimal fuel cell stack design.

Diffusion Coefficients and Membrane Potential within Carrier Membrane by Reverse Transport System

  • Yang, Wong-Kang;Jeong, Sung-Hyun;Lee, Won-Chul
    • Korean Membrane Journal
    • /
    • 제4권1호
    • /
    • pp.36-40
    • /
    • 2002
  • The diffusion coefficients of ions in the reverse transport system using the carrier mediated membrane were estimated from the diffusional membrane permeabilities and the ion activity in membrane system. In the aqueous alkali metal ions-membrane system diffusional flux of alkali metal ions driven by coupled proton was analyzed. The aqueous phase I contained NaOH solution and the aqueous phase II also contained NaCl and HCl mixed solution. The concentration of Na ions of both phases were $10^{0},\;10^{-1},\;10^{-2},\;5{\times}10^{-1}\;and\;5{\times}10^{-2}\;mol{\cdot}dm^{-3}$ and the concentration of HCI in aqueous phase II was always kept at $1{\times}10^{-1}\;mol{\cdot}dm^{-3}$. Moreover, the carrier concentration in liquid membrane was $10^{-2}\;mol{\cdot}dm^{-3}$. The results indicated that the diffusion coefficients depend strongly on the concentration of both phases electrolyte solution equilibriated with the membrane. The points were interpreted in terms of the energy barrier theory. Furthermore, eliminating the potential terms from the membrane equation was derived.

폐수 내 고농도 free ammonia(FA)가 미세조류의 성장 및 기질제거에 미치는 영향 평가 (Effect of high free ammonia concentration on microalgal growth and substrate uptake)

  • 김은지;조재형;노경호;남귀숙;황선진
    • 상하수도학회지
    • /
    • 제30권6호
    • /
    • pp.715-723
    • /
    • 2016
  • This study investigated the effect of high concentration of free ammonia on microalgal growth and substrate removal by applying real wastewater nitrogen ratio. To test of this, the conditions of free ammonia 1, 3, 6, 9, 12, 15 mg-N/L are compared. After 3 days of incubation, algal growth of Chlorella vulgaris and carbon removal rate are respectively lower in the reactors of FA 12, 15 mg-N/L compared to the others. This indicates that the high concentration of free ammonia, in this case, above 12 mg-N/L, has negative effect on algal growth and metabolic activity. Also, high concentration of free ammonia causes the proton imbalance, ammonium accumulation in algae and has toxicity for these reasons. So, we have to consider free ammonia in applying the microalgae to wastewater treatment system by the way of diluting wastewater or controlling pH and temperature.

Hypsochromic Shifts in Retinochrome Absorption Spectra in the Presence of Nitrate

  • Takemori, Nobuaki;Mizukami, Taku;Tsujimoto, Kazuo
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.264-266
    • /
    • 2002
  • The absorption wavelength of the protonated retinal Schiff base can be controlled by the surrounding environment. An external anion is related to fine adjustment of the absorption wavelength. The addition of anion to retinochrome solution caused blue shift in spectra. The increase of the shift was dependent on the ion concentration. The large shift value was obtained as 20 nm at the saturated concentration of nitrate. The shift intensity for the nitrate addition exceeded that of chloride. Seemingly, it depends on the ionic strength or lyotropic character of the anion. However, neither of sulphate nor gluconate ion showed remarkable blue shift. These phenomena were accounted for with (1) delocalization of the positive charge in the conjugated polyene system, (2) ionic bonding strength between the counter ion (glutamate) and the proton, and/or (3) interaction of the added anion with the proton on Schiff base.

  • PDF