• Title/Summary/Keyword: Proton Exchange Membrane (PEM)

Search Result 119, Processing Time 0.029 seconds

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향)

  • Choi, Chanhee;Hwang, Seansoo;Kim, Kihyun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.292-303
    • /
    • 2022
  • An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.

Performance change according to the catalyst intrusion rate in the MEA for the PEM water electrolysis (고분자전해질 수전해용 MEA의 촉매침투도에 따른 성능변화)

  • Kim, Hong-Youl
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.254-256
    • /
    • 2009
  • The performances of proton exchange membrane (PEM) water electrolysis depend on many factors such as materials, geometries, fabrication methods, operating conditions, and so forth. The fabrication method is concerned, membrane electrode assemblies (MEA) are a most important part to show different performances by different fabrication methods. The performance change of PEM water electrolysis was experimentally measured according to the fabrication differences of the anode electrodes. One point of view is the catalyst intrusion rate to the anode gas diffusion layer (GDL), and the other point of view is the catalyst loading distribution in depth of the anode GDL. Results show that the performances of MEA with deep intrusion of the catalysts are better in the range of low current densities but worse at higher current densities. The catalyst loading distribution does not affect significantly to the performance of PEM water electrolyser.

  • PDF

Performance Change according to the Catalyst Intrusion Rate in the MEA for the PEM Water Electrolysis (고분자전해질 수전해용 MEA의 촉매침투도에 따른 성능변화)

  • Kim, Hong-Youl;Lee, Ji-Jung;Lee, Jae-Young;Lee, Hong-Ki
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.75-78
    • /
    • 2009
  • The performances of proton exchange membrane (PEM) water electrolysis depend on many factors such as materials, geometries, fabrication methods, operating conditions, and so forth. The fabrication method is concerned, membrane electrode assemblies (MEA) are a most important part to show different performances by different fabrication methods. The performance change of PEM water electrolysis was experimentally measured according to the fabrication differences of the anode electrodes. One point of view is the catalyst intrusion rate to the anode gas diffusion layer (GDL), and the other point of view is the catalyst loading distribution in depth of the anode GDL. Results show that the performances of MEA with deep intrusion of the catalysts are better in the range of low current densities but worse at higher current densities. The catalyst loading distribution does not affect significantly to the performance of PEM water electrolyser.

  • PDF

Silica/polymer Nanocomposite Containing High Silica Nanoparticle Content : Change in Proton Conduction and Water Swelling with Surface Property of Silica Nanoparticles (고농도의 Silica Nanoparticle을 함유한 Silica/polymer 나노복합체 : 실리카 표면 특성에 따른 수소이온 전도성 및 수팽윤도 변화)

  • Kim, Ju-Young;Kim, Seung-Jin;Na, Jae-Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.514-521
    • /
    • 2010
  • A new one-shot process was employed to fabricate proton exchange membranes (PEMs) over conventional solvent-casting process. Here, PEMs containing nano-dispersed silica nanoparticles were fabricated using one-shot process similar to the bulk-molding compounds (BMC). Different components such as reactive dispersant, urethane acrylate nonionmer (UAN), styrene, styrene sulfuric acid and silica nano particles were dissolved in a single solvent dimethyl sulfoxide (DMSO) followed by copolymerization within a mold in the presence of radical initiator. We have successfully studied the water-swelling and proton conductivity of obtained nanocomposite membranes which are strongly depended on the surface property of dispersed silica nano particles. In case of dispersion of hydrophilic silica nanoparticles, the nanocomposite membranes exhibited an increase in water-swelling and a decrease in methanol permeability with almost unchanged proton conductivity compared to neat polymeric membrane. The reverse observations were achieved for hydrophobic silica nanoparticles. Hence, hydrophilic and hydrophobic silica nanoparticles were effectively dispersed in hydrophilic and hydrophobic medium respectively. Hydrophobic silica nanoparticles dispersed in hydrophobic domains of PEMs largely suppressed swelling of hydrophilic domains by absorbing water without interrupting proton conduction occurred in hydrophilic membrane. Consequently, proton conductivity and water-swelling could be freely controlled by simply dispersing silica nanopartilces within the membrane.

Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.155-170
    • /
    • 2012
  • Fuel cells have been considered as alternative power generation system in the twenty-first century because of eco-friendly system, high power density and efficiency compare with petroleum engine system. Proton exchange membranes (PEMs) are the key components in fuel cell system. Currently, Nafion has been used in fuel cell system. However, Nafion has disadvantages such as low conductivity at high temperature and high cost. The researchers have focused to reach the high properties such as high proton conductivity, low permeability to fuel, good chemical/thermal stability, good mechanical properties and low manufacturing cost. Various methods have been developed for preparation of proton exchange membrane with high performance and commercialization of fuel cell system. The hybrid organic/inorganic membrane has the potentials to provide a unique combination of organic and inorganic properties with improved proton conductivity and mechanical property at high temperatures. So, this paper presents an overview of research trend for the composite membranes prepared by organic/inorganic system using various inorganic materials.

Control of Small PEM Fuel Cell Stack by a Microprocessor (마이크로프로세서를 이용한 소형 PEM 연료전지 스택의 제어)

  • Kim, Tae-Hoon;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.469-475
    • /
    • 2008
  • In this paper, control of small PEM(Proton Exchange Membrane) fuel cell stack by a microprocessor is introduced. The water management of fuel cell stack inside, a key technique in fuel cell control, can be achieved by adjusting the required air flow for fuel and cooling, and by purging the excessive water from the stack. It is very important to precisely control the BOS(Balance of Stack) since the stable operation of the fuel cell system mainly depends on it. In this study the fuel efficiency of the system is improved by the control of the system based on the measured air flow and purge cycle during the optimal operation and its effectiveness is proved by the experiments. The operating stability of the system is improved by the developed controller using a microprocessor and it is expected to be widely used for the control of small PEM fuel cell stack.

Performance Degradation of Mea with Cation Contamination in Polymer Electrolyte Membrane Water Electrolysis (고분자 전해질막 수전해 막전극접합체의 양이온 오염에 따른 성능 저하)

  • JUNG, HYEYOUNG;CHOI, NAKHEON;IM, SUHYUN;YOON, DAEJIN;MOON, SANGBONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • Proton Exchange Membrane Water Electrolysis (PEMWE) is one of the most popular and widely used methods for hydrogen production. PEMWE contributes to eco-friendly system via its energy storage system application, hence making it environmentally friendly to use. However, its main drawback is contamination of proton exchange membrane during water electrolysis. Existing cation such as magnesium, calcium and the likes are the cause for membrane contamination. As a result, the cation contamination give rise to degradation of performance of electrolysis and the reverse electrolysis is effective method to remove cation.

High Proton Conductivity Crosslinked Sulfonated Polyimide Membranes (높은 수소이온전도성을 가진 가교술폰화폴리이미드막)

  • Lee, Chang-Hyun;Park, Chi-Hoon;Park, Ho-Bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.61-63
    • /
    • 2003
  • A major research objective related to proton exchange membrane(PEM) for DMFC is to achieve high proton conductivity over 10$^{-2}$ S/cm, high hydrolytic stability and low methanol permeability with low cost base materials. for the purpose, a lot of thermoplastic polymers such as polysulfones, polyethersulfone, polyetherketones, polyimides, polyoxadiazole, polyphosphazene and polybenzimidazol have been investigated. Amongst those polymers, polyimides have been suggested as a potential PEM due to their excellent thermal, chemical stability and good mechanical properties. Generally, polyimides are synthesized by polycondensation with numerious diamines and dianhydriedes. In our study, polyimide was prepared using non-sulfonated diamine, sulfonated diamine directly synthesized by fuming sulfuric acid, and naphthalenic dianhydride to improve the hydrolysis stability under acidic condition. Through monomer sulfonation-subsequent polymerization method, the high proton conducting capability and the desired sulfonation level were effectively controlled at the same time. To reduce severe methanol transport through the membrane, the chemical crosslinking among polymer chains was introduced using various crosslinking agents with different chain lengths. The crosslinked sulfonated polyimide membranes showed high proton conductivity up to 8.09$\times$10$^{-2}$ S/cm and from crosslinking effect methanol transport through the membranes was considerably reduced as compared with unmodified membranes. For increase of chain length of crosslinker, methanol permeability was adversely reduced to 10$^{-8}$ $\textrm{cm}^2$/s due to decrease of IEC and increase of crosslinking desity.

  • PDF

Development of Polymer Electrolyte Membranes Using Dipole-dipole Interaction for Fuel Cell Applications (쌍극자-쌍극자 상호작용 형성을 이용한 향상된 기능의 연료전지용 고분자 전해질 막의 개발)

  • Won, Mihee;Kwon, Sohyun;Kim, Tae-Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.413-422
    • /
    • 2015
  • Proton exchange membrane (PEM), which transfers proton from the anode to the cathode, is the key component of the proton exchange membrane fuel cell (PEMFC). Nafion is widely used as PEM due to its high proton conductivity as well as excellent chemical and physical stabilities. However, its high cost and the environmental hazards limit the commercial application in PEMFCs. To overcome these disadvantages, various alternative polymer electrolytes have been investigated for fuel cell applications. We used densely sulfonated polymers to maximize the ion conductivity of the corresponding membrane. To overcome high swelling, dipole-dipole interaction was used by introducing nitrile groups into the polymer backbone. As a result, physically-crosslinked membranes showed improved swelling ratio despite of high water uptake. All the membranes with different hydrophilic-hydrophobic compositions showed higher conductivity, despite their lower IEC, than that of Nafion-117.

Proton Exchange Membranes using Polymer Blends of PVA(Polyvinyl alcohol)/PSSA-MA(Polystyrene sulfonic acid-co-maleic acid)

  • Knag, Moon-Sung;Kim, Jong-Hak;Kim, Hyunyoo;Jongok Won;Moon, Seung-Hyeon;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.29-32
    • /
    • 2004
  • Reduction of methanol crossover in proton exchange membranes (PEMs) can be achieved by 1) the selection of materials, 2) the morphology control, and 3) the adequate crosslinking [1, 2]. The selection of polymer matrix of PEM for direct methanol fuel cells (DMFCs) is very important because the proton conductivity and methanol permeability are largely dependent upon the properties of polymers.(omitted)

  • PDF