• Title/Summary/Keyword: Proteome Approach

Search Result 58, Processing Time 0.034 seconds

Rice Proteomics: A Functional Analysis of the Rice Genome and Applications (프로테옴 해석에 의한 벼 게놈 기능해석과 응용)

  • Woo, Sun-Hee;Kim, Hong-Sig;Song, Berm-Heun;Lee, Chul-Won;Park, Young-Mok;Jong, Seung-Keun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.281-291
    • /
    • 2003
  • In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is the most prevalent technique to rapidly identify a large number of proteome analysis. However, the conventional Western blotting/sequencing technique has been used in many laboratories. As a first step to efficiently construct protein cata-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein sports are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins(i, e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 45% of total rice cDNA have been deposited in the EMBL database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that tuned out to be calreticulin, gibberellin-binding protein, which is ribulose-1.5-bisphosphate carboxylase/oxygense active in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins(http://genome.c.kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Also, the information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful be in the plant molecular breeding.

Proteomic Functional Characterization of Bovine Stromal Vascular Cells from Omental, Subcutaneous and Intramuscular Adipose Depots

  • Rajesh, Ramanna Valmiki;Kim, Seong-Kon;Park, Mi-Rim;Nam, Jin-Seon;Kim, Nam-Kuk;Kwon, Seulemina;Yoon, Du-Hak;Kim, Tae-Hun;Lee, Hyun-Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.110-124
    • /
    • 2011
  • Anatomically separate fat depots differ in size, function, and contribution to pathological states such as the metabolic syndrome. We isolated pre-adipocytes from different adipose depots, omental, subcutaneous and intramuscular, of beef cattle, and cultured in vitro to determine the basis for the variations and attribute these variations to the inherent properties of adipocyte progenitors. The proliferating cells from all depots before the confluence were harvested and the proteome was analyzed by a functional proteomic approach, involving 2-DE and MALDI-TOF/TOF. More than 252 protein spots were identified, selected and analyzed by Image Master (ver 7.0) and MALDI-TOF/TOF. Further, our analysis showed that there were specific differences in proteome expression patterns among proliferating precursor cells from the three depots. Sixteen proteins were found to be differentially expressed and these were identified as proteins involved in cellular processes, heat shock/chaperones, redox proteins, cytoskeletal proteins and metabolic enzymes. The results also enabled us to understand the basic roles of these proteins in different inherent properties exhibited by adipose tissue depots.

Differential Proteomic Analysis of Secreted Proteins from Cutinase-producing Bacillus sp. SB-007

  • Ban, Yeon-Hee;Jeon, Mi-Ri;Yoon, Ji-Hee;Park, Jae-Min;Um, Hyun-Ju;Kim, Dae-Soon;Jung, Seung-Ki;Kim, Keun-Young;Lee, Jee-Won;Min, Ji-Ho;Kim, Yang-Hoon
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.191-201
    • /
    • 2008
  • Bacillus sp. SB-007 was isolated from pea leaves harvested from the southwestern parts of South Korea through screening on a minimal medium containing 0.2% purified cutin for its ability to induce the cutinase production. However, no cutinase was produced when it was grown in a minimal medium containing 0.2% glucose. A proteomic approach was applied to separate and characterize these differentially secreted proteins. The expression level of 83 extracellular proteins of the cutinase-producing Bacillus sp. strain SB-007 incubated in a cutinase-induced medium increased significantly as compared with that cultured in a non cutinase-induced medium containing glucose. The extracellular proteome of Bacillus sp. SB-007 includes proteins from different functional classes, such as enzymes for the degradation of various macromolecules, proteins involved in energy metabolism, sporulation, transport/binding proteins and lipoproteins, stress inducible proteins, several cellular molecule biosynthetic pathways and catabolism, and some proteins with an as yet unknown function. In addition, the two protein spots showed little similarities with the known lipolytic enzymes in the database. These secreted proteome analysis results are expected to be useful in improving the Bacillus strains for the production of industrial cutinases.

Altered Proteome of Extracellular Vesicles Derived from Bladder Cancer Patients Urine

  • Lee, Jingyun;McKinney, Kimberly Q.;Pavlopoulos, Antonis J.;Niu, Meng;Kang, Jung Won;Oh, Jae Won;Kim, Kwang Pyo;Hwang, Sunil
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.179-187
    • /
    • 2018
  • Proteomic analysis of extracellular vesicles (EVs) from biological fluid is a powerful approach to discover potential biomarkers for human diseases including cancers, as EV secreted to biological fluids are originated from the affected tissue. In order to investigate significant molecules related to the pathogenesis of bladder cancer, EVs were isolated from patient urine which was analyzed by mass spectrometry based proteomics. Comparison of the EV proteome to the whole urine proteome demonstrated an increased number of protein identification in EV. Comparative MS analyses of urinary EV from control subjects and bladder cancer patients identified a total of 1,222 proteins. Statistical analyses provided 56 proteins significantly increased in bladder cancer urine, including proteins for which expression levels varied by cancer stage (P-value < 0.05). While urine represents a valuable, non-invasive specimen for biomarker discovery in urologic cancers, there is a high degree of intra- and inter-individual variability in urine samples. The enrichment of urinary EV demonstrated its capability and applicability of providing a focused identification of biologically relevant proteins in urological diseases.

Proteome characterization of the liquid cultured tetraploid roots in Platycodon grandiflorum

  • Ko, Jung-Hee;Kwon, Soo Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.125-125
    • /
    • 2017
  • The roots of Platycodon grandiflorum are commonly used for treating bronchitis, asthma, tuberculosis, diabetes, and other inflammatory diseases. Since the molecular mechanism underlying the roots of the plant is unclear. Therefore, the present study was conducted to profile proteins from liquid cultured tetraploid roots of Platycodon grandi orum fl using high throughput proteome approach. Two-dimensional gels stained with CBB, a total of 659 differentially expressed proteins were identified from the liquid medium cultured tetraploid roots of which 32 proteins spots (${\geq}1.5-fold$) were sorted for mass spectrometry analysis. Out of these 32 proteins, a total of 15 proteins were up-regulated such as Serine carboxypeptidase-like 27, Transcription factor bHLH150, 60 kDa jasmonate-induced protein, Cytosolic Fe-S cluster assembly factor NBP35, Regulatory associated protein of TOR 2 and a total of 17 proteins were down-regulated such as Protein G1-like2, Phenylalanine ammonia-lyase, Fructokinase-2, Trihelix transcription factor GT-3a, Guanine nucleotide-binding protein alpha-1 subunit. However, the frequency distribution of identified proteins was carried out within functional categories based on molecular functions, cellular components, and biological processes. Functional categorization revealed that the most of the identified proteins from the explants were mainly associated with the nucleic acid binding, oxidoreductase, transferase activity, protein binding and hydrolase activity. In addition, the proteomic feedback of tetraploid roots of P. grandiflorum may potentially be used to understand the characteristics of proteins and their functions.

  • PDF

Proteome Profiling Unfurl Differential Expressed Proteins from Various Explants in Platycodon Grandiflorum

  • Kim, Hye-Rim;Kwon, Soo-Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag-Hyun;Cho, Kab-Yeon;Boo, Hee-Ock;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • Platycodon grandiflorum, commonly known as Doraji in Korea, has a wide range of pharmacologic properties, such as reducing adiposity and hyperlipidemia, and antiatherosclerotic effects. However, the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}$ 2-fold) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). In that way, the exclusive protein profile may provide insight clues for better understanding the characteristics of proteins and metabolic activity in various explants of the economically important medicinal plant Platycodon grandiflorum.

Differential Protein Quantitation in Mouse Neuronal Cell Lines using Amine-Reactive Isobaric Tagging Reagents with Tandem Mass Spectrometry

  • Cho, Kun;Park, Gun-Wook;Kim, Jin-Young;Lee, Sang-Kwang;Oh, Han-Bin;Yoo, Jong-Shin
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.25-28
    • /
    • 2010
  • The high-throughput identification and accurate quantification of proteins are essential strategies for exploring cellular functions and processes in quantitative proteomics. Stable isotope tagging is a key technique in quantitative proteomic research, accompanied by automated tandem mass spectrometry. For the differential proteome analysis of mouse neuronal cell lines, we used a multiplexed isobaric tagging method, in which a four-plex set of amine-reactive isobaric tags are available for peptide derivatization. Using the four-plex set of isobaric tag for relative and absolute quantitation (iTRAQ) reagents, we analyzed the differential proteome in several stroke time pathways (0, 4, and 8 h) after the mouse neuronal cells have been stressed using a glutamate oxidant. In order to obtain a list of the differentially expressed proteins, we selected those proteins which had apparently changed significantly during the stress test. With 95% of the peptides showing only a small variation in quantity before and after the test, we obtained a list of eight up-regulated and four down-regulated proteins for the stroke time pathways. To validate the iTRAQ approach, we studied the use of oxidant stresses for mouse neuronal cell samples that have shown differential proteome in several stroke time pathways (0, 4, and 8 h). Results suggest that histone H1 might be the key protein in the oxidative injury caused by glutamate-induced cytotoxicity in HT22 cells.

Proteomic Screening of Antigenic Proteins from the Hard Tick, Haemaphysalis longicornis (Acari: Ixodidae)

  • Kim, Young-Ha;Islam, Mohammad Saiful;You, Myung-Jo
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.1
    • /
    • pp.85-93
    • /
    • 2015
  • Proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. For detection of antigens from Haemaphysalis longicornis, 1-dimensional electrophoresis (1-DE) quantitative immunoblotting technique combined with 2-dimensional electrophoresis (2-DE) immunoblotting was used for whole body proteins from unfed and partially fed female ticks. Reactivity bands and 2-DE immunoblotting were performed following 2-DE electrophoresis to identify protein spots. The proteome of the partially fed female had a larger number of lower molecular weight proteins than that of the unfed female tick. The total number of detected spots was 818 for unfed and 670 for partially fed female ticks. The 2-DE immunoblotting identified 10 antigenic spots from unfed females and 8 antigenic spots from partially fed females. Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF) of relevant spots identified calreticulin, putative secreted WC salivary protein, and a conserved hypothetical protein from the National Center for Biotechnology Information and Swiss Prot protein sequence databases. These findings indicate that most of the whole body components of these ticks are non-immunogenic. The data reported here will provide guidance in the identification of antigenic proteins to prevent infestation and diseases transmitted by H. longicornis.