• 제목/요약/키워드: Protein-to-protein interaction

검색결과 1,447건 처리시간 0.028초

Protein-protein Interaction Network Analyses for Elucidating the Roles of LOXL2-delta72 in Esophageal Squamous Cell Carcinoma

  • Wu, Bing-Li;Zou, Hai-Ying;Lv, Guo-Qing;Du, Ze-Peng;Wu, Jian-Yi;Zhang, Pi-Xian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2345-2351
    • /
    • 2014
  • Lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase (LOX) family, is a copper-dependent enzyme that catalyzes oxidative deamination of lysine residues on protein substrates. LOXL2 was found to be overexpressed in esophageal squamous cell carcinoma (ESCC) in our previous research. We later identified a LOXL2 splicing variant LOXL2-delta72 and we overexpressed LOXL2-delta72 and its wild type counterpart in ESCC cells following microarray analyses. First, the differentially expressed genes (DEGs) of LOXL2 and LOXL2-delta72 compared to empty plasmid were applied to generate protein-protein interaction (PPI) sub-networks. Comparison of these two sub-networks showed hundreds of different proteins. To reveal the potential specific roles of LOXL2- delta72 compared to its wild type, the DEGs of LOXL2-delta72 vs LOXL2 were also applied to construct a PPI sub-network which was annotated by Gene Ontology. The functional annotation map indicated the third PPI sub-network involved hundreds of GO terms, such as "cell cycle arrest", "G1/S transition of mitotic cell cycle", "interphase", "cell-matrix adhesion" and "cell-substrate adhesion", as well as significant "immunity" related terms, such as "innate immune response", "regulation of defense response" and "Toll signaling pathway". These results provide important clues for experimental identification of the specific biological roles and molecular mechanisms of LOXL2-delta72. This study also provided a work flow to test the different roles of a splicing variant with high-throughput data.

Coordination of Pancreatic $HCO_3^-$ Secretion by Protein-Protein Interaction between CFTR and Luminal NHE

  • Wooin Ahn;Kim, Kyung-Hwan;Lee, Jin-Ah;Kim, Joo-Young;Park, Joo-Young;Shmuel Muallem;Lee, Min-Goo
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.56-56
    • /
    • 2001
  • Increasing evidence suggests that protein-protein interaction is essential in many biological processes including epithelial transport. In this report, we present the significance of protein interactions to HCO$_3$$^{-10}$ secretion in pancreatic duct cells. In pancreatic ducts HCO$_3$$^{-10}$ secretion is mediated by CFTR-activated luminal CUHCO$_3$$^{-10}$ exchange activity and HCO$_3$$^{-10}$ absorption is achieved by Na$^{+}$-dependent mechanism including NHE3.(omitted)

  • PDF

Unbound Protein-Protein Docking Using Conformational Space Annealing

  • Lee, Kyoung-Rim;Joo, Kee-Hyoung;Lee, Joo-Young
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.294-299
    • /
    • 2005
  • We have studied unbound docking for 12 protein-protein complexes using conformational space annealing (CSA) combined along with statistical pair potentials. The CSA, a powerful global optimization tool, is used to search the conformational space represented by a translational vector and three Euler amgles between two proteins. The energy function consists of three statistical pair-wise energy terms; one from the distance-scaled finite ideal-gas reference state (DFIRE) approach by Zhou and the other two derived from residue-residue contacts. The residue-residue contact terms describe both attractive and repulsive interactions between two residues in contact. The performance of the CSA docking is compared with that of ZDOCK, a well-established protein-protein docking method. The results show that the application of CSA to the protein-protein docking is quite successful, indicating that the CSA combined with a good scoring function is a promising method for the study of protein-protein interaction.

  • PDF

Evidence of Interaction of Phage P22 Tailspike Protein with DnaJ During Translational Folding

  • Lee, Sang-Chul;Yu, Myeong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.162-166
    • /
    • 2004
  • Phage P22 tailspike is a thermostable homotrimeric protein, and temperature-sensitive folding (tsf) and global suppressor mutations affect its folding yields at elevated temperatures. We earlier suggested that the folding of the tailspike protein in Escherichia coli requires an unidentified molecular chaperone. Accordingly, in the present study, the interactions of purified DnaK, DnaJ, and GrpE heat-shock proteins with the tailspike protein were investigated during the translation and folding of the protein. The cotranslational addition of DnaJ to the tailspike protein resulted in the arrest of folding, when Dnak and GrpE were missing. However, the presence of DnaK, DnaJ, and GrpE had no effect on the folding yield of the tails pike protein, thus, providing evidence for the binding of the nascent tailspike protein with DnaJ protein, a member of DnaK chaperoning cycle.

Structural and Thermodynamic Characteristics of cHLH Peptide and cHLH/HDM2 Complex

  • Im, Haeri;Cho, Sunhee;Ham, Sihyun
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.62-66
    • /
    • 2016
  • Tumor suppressor protein p53 loses its function upon binding with the HDM2 protein, and inhibiting the p53-HDM2 interaction is critical to suppress tumor cell growth. Recently, the cyclized helix-loop-helix peptide (cHLH) mimicking the ${\alpha}-helix$ part of the p53 protein has been designed and found to exhibit high binding affinity with HDM2. Here, we report the structural and thermodynamic characteristics of the bound complex of the cHLH peptide with the HDM2 protein. We performed molecular dynamics simulations to investigate the structural features of the cHLH peptide as well as its complex with the HDM2. The binding free energy calculation based on the integral equation theory was also executed to quantify the binding affinity for the cHLH/HDM2 complex and to understand the factors contributing to the binding affinity. We found a variety of factors for the helix stability of the cHLH peptide as well as in the complexation with the HDM2, which may provide an insight into the development of anti-cancer drug designs.

  • PDF

A WD40 Repeat Protein, Arabidopsis Sec13 Homolog 1, May Play a Role in Vacuolar Trafficking by Controlling the Membrane Association of AtDRP2A

  • Lee, Myoung Hui;Lee, Sung Hoon;Kim, Heyran;Jin, Jing Bo;Kim, Dae Heon;Hwang, Inhwan
    • Molecules and Cells
    • /
    • 제22권2호
    • /
    • pp.210-219
    • /
    • 2006
  • Dynamin-related protein 2A (AtDRP2A, formally ADL6), a member of the dynamin family, is critical for protein trafficking from the TGN to the central vacuole. However, the mechanism controlling its activity is not well understood in plant cells. We isolated Arabidopsis sec13 homolog1 (AtSeh1) that interacts with AtDRP2A by a yeast two-hybrid screening. AtSeh1 has four WD40 motifs and amino acid sequence homology to Sec13, a component of COPII vesicles. Coimmunoprecipitation and protein pull-down experiments demonstrated specific interaction between AtSeh1 and AtDRP2A. AtSeh1 bound to the pleckstrin homology domain of AtDRP2A in competition with the C-terminal domain of the latter, and this resulted in inhibition of the interaction between AtDRP2A and PtdIns3P in vitro. AtSeh1 localized to multiple locations: the nucleus, the prevacuolar compartment and the Golgi complex. Based on these results we propose that AtSeh1 plays a role in regulating cycling of AtDRP2A between membrane-bound and soluble forms.

Co-expression of a novel ankyrin-containing protein, rSIAP, can modulate gating kinetics of large-conductance calcium-activated potassium channel from rat brain.

  • Lim, Hyun-Ho;Park, Chul-Seung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.45-45
    • /
    • 2003
  • We isolated a novel ankyrin-repeat containing protein, rSIAP (rSlo Interacting Ankyrin-repeat Protein), as an interacting protein to the cytosolic domain of the alpha-subunit of rat large-conductance Ca$\^$2+/-activated K$\^$+/ channel (rSlo) by yeast two-hybrid screening. Affinity pull-down assay showed the direct and specific interaction between rSIAP and rSlo domain. The channel-binding proteins can be classified into several categories according to their functional effects on the channel proteins, i.e. signaling adaptors, scaffolding net, molecular tuners, molecular chaperones, etc. To obtain initial clues on its functional roles, we investigated the cellular localization of rSIAP using immunofluorescent staining. The results showed the possible co-localization of rSlo and rSIAP protein near the plasma membrane, when co-expressed in CHO cells. We then investigated the functional effects of rSIAP on the rSlo channel using electrophysiological means. The co-expression of rSIAP accelerated the activation of rSlo channel. These effects were initiated at the micromolar [Ca$\^$2+/]$\_$i/ and gradually increased as [Ca$\^$2+/]$\_$i/ raised. Interestingly, rSIAP decreased the inactivation kinetics of rSlo channel at micromolar [Ca$\^$2+/]$\_$i/, while the rate was accelerated at sub-micromolar [Ca$\^$2+/]$\_$i/. These results suggest that rSIAP may modulate the activity of native BK$\_$Ca/ channel by altering its gating kinetics depending on [Ca$\^$2+/]$\_$i/. To localize critical regions involved in protein-protein interaction between rSlo and rSIAP, a series of sub-domain constructs were generated. We are currently investigating sub-domain interaction using both of yeast two-hybrid method and in vitro binding assay.

  • PDF

Characterization of Insulin-like Growth Factor-free Interaction between Insulin-like Growth Factor Binding Protein 3 and Acid Labile Subunit Expressed from Xenopus Oocytes

  • Choi, Kyung-Yi;Kyung, Yoon-Joo;Lee, Chul-Young;Lee, Dong-Hee
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.153-158
    • /
    • 2004
  • The acid-labile subunit (ALS) is known to interact with the IGF binding protein (IGFBP) in the presence of insulin-like growth factors (IGFs). Studies, however, indicate that ALS forms a doublet with IGFBP3, independent of IGFs. To characterize the structural domain required for the IGF-free ALS-IGFBP3 interaction, seven recombinant human IGFBP3 mutants were generated: three deletion mutants and four site-specific mutants that had altering N-terminal regions of IGFBP3. ALS and IGFBP3 mRNAs were co-injected into Xenopus oocytes, and their products were cross-linked and immunoprecipitated using antisera against ALS or IGFBP3. Among the deletion mutants, the mutant of D40 (deleted in 11-40th amino acids) exerted no effect in the interaction with ALS, while D60 (${\Delta}11$-60) demonstrated a moderate reduction. D88 (${\Delta}11$-88), however, showed a significant decrease. In the case of site-specific mutants, the mutation that alterated the IGF binding site (codons 56 or 80) exerted a significant reduction in the interaction, whereas codons 72 or 87 showed no significant change in the interaction with ALS. The stability of the ALS-IGFBP3 interaction was analyzed according to a time-dependent mode. Consistent with the binding study, mutants on the IGF binding sites (56 or 80) consistently show a weakness in the ALS-IGFBP3 interaction when compared to the mutants that covered the non-IGF binding sites (72 or 87). This study suggests that the N-terminal of IGFBP3, especially the IGF binding site, plays an important role in interacting with ALS as well as in stabilizing the dual complex, independent of IGFs.

Evaluation of Gelation Properties of Salt-Soluble Proteins Extracted from Protaetia brevitarsis Larvae and Tenebrio molitor Larvae and Application to Pork Myofibrillar Protein Gel System

  • Ji Seon Choi;Geon Ho Kim;Ha Eun Kim;Min Jae Kim;Koo Bok Chin
    • 한국축산식품학회지
    • /
    • 제43권6호
    • /
    • pp.1031-1043
    • /
    • 2023
  • The purpose of this study was to investigate the functional properties of salt-soluble proteins obtained from Protaetia brevitarsis (PB) and Tenebrio molitor (TM) larvae, the interaction between these proteins and pork myofibrillar protein (MP) in a gel system. The gel properties of salt-soluble protein extracts showed that the PB had a higher viscosity than the TM protein. However, the TM protein had higher gel strength compared with the PB protein. The gelation characteristics of the pork MP gel systems added with lyophilized insect salt-soluble protein powder showed to decrease slightly viscosity compared with MP alone. Adding the TM or PB protein powder did not affect the pork MP's hydrophobicity and sulfhydryl group levels. Furthermore, the protein bands of the MP did not change with the type or amount of insect salt-soluble protein. The cooking yields of the pork MP gels containing PB or TM protein powder were higher than those without insect protein. Regardless of the type of insect salt-soluble protein added, the pork MP's gel strength decreased. Furthermore, as the level of insect powder increased, the surface protein structure became rough and porous. The results demonstrated that proteins extracted from PB and TM larvae interfered with the gelation of pork MP in a gel system.

Conformational Change of Escherichia coli Signal Recognition Particle Ffh Is Affected by the Functionality of Signal Peptides of Ribose-Binding Protein

  • Ahn, Taeho;Ko, Ju Hee;Cho, Eun Yi;Yun, Chul-Ho
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.681-687
    • /
    • 2009
  • We examined the effects of synthetic signal peptides, wild-type (WT) and export-defective mutant (MT) of ribose-binding protein, on the conformational changes of signal recognition particle 54 homologue (Ffh) in Escherichia coli. Upon interaction of Ffh with WT peptide, the intrinsic Tyr fluorescence, the transition temperature of thermal unfolding, and the GTPase activity of Ffh decreased in a peptide concentration-dependent manner, while the emission intensity of 8-anilinonaphthalene-1-sulfonic acid increased. In contrast, the secondary structure of the protein was not affected. Additionally, polarization of fluorescein-labeled WT increased upon association with Ffh. These results suggest that WT peptide induces the unfolded states of Ffh. The WT-mediated conformational change of Ffh was also revealed to be important in the interaction between SecA and Ffh. However, MT had marginal effect on these conformational changes suggesting that the in vivo functionality of signal peptide is important in the interaction with Ffh and concomitant structural change of the protein.