C16 ## Coordination of Pancreatic HCO₃ Secretion by Protein-Protein Interaction between CFTR and Luminal NHE Wooin Ahn^{1,*}, Kyung Hwan Kim¹, Jin Ah Lee¹, Joo Young Kim¹, Joo Young Choi², Shmuel Muallem², and Min Goo Lee¹ ¹Department of Pharmacology, Yonsei University College of Medicine, Seoul 120-752, Korea, ²Department of Physiology and University of Texas Southwestern Medical Center, Dallas, Texas 75235 Increasing evidence suggests that protein-protein interaction is essential in many biological processes including epithelial transport. In this report, we present the significance of protein interactions to HCO₃ secretion in pancreatic duct cells. In pancreatic ducts HCO₃ secretion is mediated by CFTR-activated luminal Cl⁻/HCO₃ exchange activity and HCO₃ absorption is achieved by Na⁺-dependent mechanisms including NHE3. We found biochemical and functional association between CFTR and NHE3. In addition, protein biding through PDZ modules is needed for this regulatory interaction. CFTR affected NHE3 activities in two ways. Acutely, CFTR augmented the cAMP-dependent inhibition of NHE3. In a chronic mechanism, CFTR increases the luminal expression of Na⁺/H⁺ exchange in pancreatic duct cells. These findings reveal that protein complexes in the plasma membrane of pancreatic duct cells are highly organized for efficient HCO₃ secretion.