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ABSTRACT: We have studied unbound docking for 12
protein-protein complexes using conformational space
annealing (CSA) combined along with statistical pair
potentials. The CSA, a powerful global optimization tool, is
used to search the conformational space represented by a
translational vector and three Euler amgles between two
proteins. The energy function consists of three statistical
pair-wise energy terms; one from the distance-scaled finite
ideal-gas reference state (DFIRE) approach by Zhou and the
other two derived from residue-residue contacts. The
residue-residue contact terms describe both attractive and
repulsive interactions between two residues in contact. The
performance of the CSA docking is compared with that of
ZDOCK, a well-established protein-protein docking method.
The results show that the application of CSA to the
protein-protein docking is quite successful, indicating that
the CSA combined with a good scoring function is a
promising method for the study of protein-protein
interaction.

1 INTRODUCION

Issues in protein-protein docking include the prediction
of the 3-dimensional structure of a protein-protein complex
from its component proteins as well as the study of its
protein-protein interaction. Understanding the
protein-protein interaction can provide insights for the
mechanism of molecular interactions in biological systems.
Computational protein docking procedure typically involves
the following two steps. First, decoys are generated using
conformational search algorithms. Second, among these
decoys near-native complex structures are selected using a
score/energy function. More detailed information on the
docking methods can be found in recent reviews."”

One of the difficulties in protein-protein docking is that
both receptor and ligand molecules may undergo
conformational changes upon protein association. Often, the
side-chain conformational changes and/or large backbone
movements are observed. To develop an efficient docking
method, one should consider a test set of protein complexes
containing the unbound structures of both the receptor and
the ligand, and the bound complex structure. The docking
efficiency can be evaluated by measuring the structural
accuracies of the modeled complexes relative to their native
complexes. In most docking procedures, a set of protein
complex models is generated from the given unbound
structures of two component proteins, and near-native
complex models are determined (if any) by comparing them
with the native complex.

If one is equipped with an accurate energy function
which can efficiently discriminate the native association of
the component proteins from a variety of non-native

associations, then the protein docking can be considered as
one of global optimization problems since the success of the
docking application depends on the identification of the
most stable association of the proteins using a given energy
function. For this reason, successful docking procedures
involve a rigorous conformational search of a given system
considering the relative position and orientation of the
component proteins as well as their flexibilities.

Conformational space annealing (CSA),>’ one of the
most efficient global optimization, has been successfully
applied to various problems including ab initio protein
structure  prediction, ">  3D-structure  prediction of
multi-chain homo-oligomer proteins'>'* and small-molecule
docking."” The CSA combined with all-atom AMBER94
potential'® was also used to the Critical Assessment of
Prediction of Interactions (CAPRI) blind experiment'’ on
the comparative evaluation of protein-protein docking for
structure prediction.'”® The results' show that the CSA
method has a potential for the study of protein-protein
interaction. The basic idea of CSA is that it enforces a broad
conformational sampling in early stages of simulation and
gradually directs the search into various narrow regions
populated with low-energy conformations. The major
advantage of the CSA is that it can find many distinct
families of low-energy conformations. This makes it
possible to search the whole intermolecular phase space of
the protein-protein association for a given energy function.
The CSA deals with the population containing diverse
solutions by directly controlling the diversity of the
population. Consequently, it can generate many distinct
low-energy solutions, one of which may correspond to the
true solution if the energy function used is reasonably
accurate.

How accurately we can describe the interaction between
the receptor and ligand depends on the energy function in
use. The energy function can be of various forms. It may
include geometric and chemical complementarities, as well
as electrostatic interaction, hydrogen-binding interaction,
and solvation energy terms. All-atom empirical potentials
and/or database-derived score functions can be also used.
Recently, a residue-specific all-atom, distance-dependent
potential of mean-force was developed by by Zhou."” They
introduced a reference state, namely the distance-scaled,
finite ideal-gas reference (DFIRE) state, to construct the
potential of mean force from a database of 1011
non-homologous (less than 30% homology) protein
structures with resolution less than 2 A. The energy function
is shown to effectively select native structures from
decoys'” and to predict the mutation-induced change in
stability'” and loop conformations.”® The successful
applications of DFIRE-based energy function to the
single-chain proteins motivated us to consider it for the
protein-protein docking problems.
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In this work, we combine the CSA with an energy
function consisting of the DFIRE-based energy term and
two additional residue-based contact energy terms
developed in our group to carry out unbound protein-protein
docking. The two residue-residue contact energy terms
represent both attractive and repulsive interactions. The test
set of 12 protein complexes used in this docking study is a
subset of 54 unbound protein-protein pairs from the
benchmark0.0 investigated by Chen et al.*' The criteria for
selecting this subset of 12 complexes were; (i) complexes
should be a protein dimer and (ii) their sequence lengths are
less than 300 amino acid residues. The goal for this study is
to investigate the applicability of the CSA coupled with the

statistical pairwise potentials for the protein-protein docking.

The CSA results will be compared with those from
ZDOCK,” a well-known protein-docking method. The rest
of this article contains computational details including
algorithms and implementation followed by the results.
Analysis and discussions are provided by highlighting key
findings and suggestion for further improvement.

2 COMPUTATIONAL DETAILS

2.1 Conformational Space Annealing

We provide only a brief description of essential
implementation of the CSA algorithm to the protein-protein
docking study. Details of the CSA and its applications are
available in the references.*> The general mechanism of
CSA algorithm is shown in Figure. 1.
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Figure 1. Flow chart of the CSA algorithm

In this work, we have considered only rigid-body
‘variables which describe translational and rotational moves
between the receptor and the ligand. In this work, we follow
the CSA procedure described in reference 18. Initially, we
generate 200 random conformations by assigning random
translation vectors (x,y,z) and rotational Euler angles (4,6 )
to the ligand with respect to its receptor which is fixed.
Energies of these random conformational complexes are

subsequently minimized by quenching the energy through
small random moves of the ligand relative to the receptor.
The details of energy-quenching are discussed in the section
2.3. Throughout the paper, the term of minimization refers
to the local energy-minimization by quenching. We call the
set of these minimized complexes the first bank and make a
copy of this first bank to the bank. The conformations in the
bank are updated in later stages, while those in the first bank
are kept unchanged. The initial value of the structural
difference cutoff, D, is set as D,,./2 where D, is the
average pairwise distance between all existing conformation
pairs in the first bank. The conformational variables of
protein complexes are the rigid-body variables (3 for the
translational vector and the other 3 for Euler angles). To
generate new conformations, we first choose 100 seed
conformations from the bank and then replace a subset of
the variables from a seed conformation with the
corresponding one from a conformation in the bank or in the
first bank. Their corresponding energies are subsequently
minimized, and these minimized conformations become
trial conformations.

The distance D(a,4) between a trial conformation « and
a conformation A4 in the bank can be defined by

D(a, A)=|AT,, (x,,2)|+ 0,0,,(4,0p) (1)

where AT 4(x,y,2) is the translation vector from 4 to ¢, and
©.(4 6 y) is the angle between the two Euler angle (4 6 v)
vectors of 4 and a. The weight factor ay is set so that two
terms in the right-hand side of eq. (1) contribute equally on
average. Let’s suppose that , among all bank conformations,
A is the closest to . If D(a,4) < D,,,, we consider that « is
similar to 4. Then, the conformation with a lower energy
between « and A is kept in the bank and the other is
discarded. On the contrary, if D(a,4) > D, « is regarded
as distinct from A and consequently from all conformations
in the bank. In this case, the conformation with the highest
energy among all bank conformation plus « is discarded,
and the rest are kept in the bank so that the total number of
the bank conformations remains unchanged through this
procedure. We perform this operation until the bank is
updated using all available trial conformations.

The value of D, is reduced by a fixed ratio after the
bank updating takes place. The value of D, is set to D,,./2
and reaches to its final value D,./5 after 200,000
minimization steps. After the value of D,,, is reduced, new
seeds are selected from the bank conformations that have
not yet been used as seeds before, to repeat the
aforementioned procedure. The value of D, is kept
constant after it reached the final value. When all
conformations in the bank are used as seeds, one round of
iteration is completed. We perform additional iterations of
search by first erasing the record of bank conformations
having been used as seeds, and by starting a new round of
iteration.

For a problem with known global minimum, the whole
procedure stops when the global minimum is found which is
examined immediately after the bank is updated by all trial
conformations. Since in this work, we do not know the
value of the global minimum energy, we have set an
arbitrary stopping criterion. That is, after 3 iterations are
completed, we add additional 200 randomly-generated and
minimized conformations to the first bank and to the bank,
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and repeat the same procedure above for additional 3
iterations to finish the search. Therefore, the conformational
search continues until the bank size becomes larger than the
preset maximum number (400 in this work). It should be
noted that since one iteration is completed only after all
bank conformations have been used as seeds, and since we
add an additional number of conformations whenever our
search reaches a deadlock, there is no loss of generality for
using particular values for the number of seeds, the number
of bank conformations, and so forth.

2.2 Energy Function

The energy function used in this work consists of three
terms; DFIRE-based statistical pair potential developed by
Zhou" and residue-based attractive and repulsive contact
energies that we have developed in our lab. Details of these
terms are described below.

2.2.1 DFIRE-based statistical pair potential

The details of DFIRE-based statistical pair potential and
its successful applications can be found in the
references.’>*® We briefly discuss about the essential points
of the DFIRE energy function and its implementation in this
work. The key of the DFIRE potential is to use a physical
references state of ideal gases, which appears to make the
DFIRE energy function more accurate. The reference state
of uniformly distributed points in finite spheres is called
distance-scaled finite, ideal gas reference (DFIRE) state and
used as the zero-interaction reference state. The
residue-specific all-atom, distance-dependent potential of
mean force was constructed from the structures of
single-chain proteins by utilizing the DFIRE state.

The DFIRE reference state can be derived using simple
statistical equations® as follows:

Neo (o jsr) = (1 175,) (Ar 1 8, IN o G Jiroe) - )

where N,,(ij,r) is the expected number of non-interacting
atomic pairs (7,j) in a same distance shell r - A+/2tor + Ar/2
only by considering a short-range interaction with a cutoff
distance of r., in the reference state; N, (ijr) is the
observed number of the same atomic pairs (7j) with the
same distance shell in the database used; and « is a given
constant, The estimation of the o values is explained well in
the reference 19. Using eq. (2), the DFIRE-based potential
is written as:

Noy (55 457) )

a
r Ar ..
A Nabs(”];rcm)
rcu! rcul

u(i, j,r)=nRT In

where 7 is a constant needed for mutation-induced stability
change, R the gas constant, and 7 is temperature (300K).
The DFIRE-based potential has been successfully applied to
selecting native structures from protein de:cogs,19 predicting
mutation-induced change in ‘stability” and looP
conformation.'**® We have used the DFIRE 1.0 program”
into CSA to study protein-protein docking.

2.2.2 Residue-based attractive energy

We have developed a set of residue-based contact
energy parameters by extracting the distances of all residue
pairs from a set containing 6,204 proteins which have been
selected from PDB_SELECT90 database.’** The protein
set of 6,204 proteins was prepared by removing the proteins
with missing residues among 7,217 proteins in the
PDB_SELECT90. Contacts are defined between residues i
and j where the C;-C, distance is within 7.0 A considering
only those residues at least 4 residues apart long the
sequence (ie. [i —[>4). The way we developed the
residue-base contact energy function is as follows. First, we
count the number of residue pairs, e.g. (4,B), which are in
contact, and the number of their component residues of the
pair in a protein of the protein set. Second, to obtain the
frequency of the (4,B) pair, we divide the number of the
(A4, B) pair by the value of the number of A times the number
of B, and sum the divided value over all chains in the set.
The frequency calculation can be defined by eq. (4)

Nr Ni(A’B) (4)

where N“4B N/ and NP are the numbers of (4,B)
pair, residue 4 and residue B in a protein i, and N; the
total number (=6,204) of proteins in the set. Third, we
construct a residue contact matrix by dividing the frequency
values of all possible pairs by the smallest frequency value
and then by taking the logarithm of the values. The
elements of the contact matrix have all non-negative values
so that all residue contacts basically produce favorable
interactions. For example, the matrix element M, 5 of the
contact pair (4, B) can be derived below in eq. (5).

P
Mup =In I()A’B) &)

min

In this protein-protein docking, since the interactions
between the receptor and the ligand are only taken into
account, 4 should belong to the receptor and B to the ligand,
or vice versa. The attractive contact energy resulting from
the residue pairs in contact for protein docking is defined by

eq. (6)

1&
Eauractive == E z M (ir,jL) (6)

LJj

where (i, j;) indicates the pair of contact residues i, and j;
which belong to the receptor and the ligand, respectively
and a factor of 1/2 is used to avoid double counting of the
residue-residue contacts.

2.2.3 Residue-based repulsive energy

The third term of the energy function is residue-based
repulsive contact energy. This energy term is used to avoid
any possible clashes between two residues in contact. The
clashes may take place because the residue-based contact is
always favored regardless of the types of the residue pairs in
contact. To derive the'repulsive energy, we used the same
protein set prepared for obtaining the residue-based
attractive contact energy in section 2.2.2. We describe the
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repulsive interactions between two contact residues using
the C;; atoms and the nitrogen (N) and oxygen (O) atoms of
the protein backbones. We measured the distances of the
C;-Cp atoms, N-N atoms and O-O atoms and found their
probable smallest distances d,;’s to be 3.4 (Cp-Cp), 3.6
(N-N), and 2.8 (0-O) A by excluding the unrealistically
small distances when their corresponding residues are in
contact. We set the maximum contact distances d,..’s of the
three atomic paits to d,,;,’s+ 0.5 A so that they can have an
allowable movement of 0.5 A. The repulsive energy
contains three terms since we deal with three different types
of atomic pairs. Each term has the same form as defined for
C;-C; repulsion below in eq. (7)

_ 8
sy - 5[ lon=d7) o
repulsive - ( dmax _ dmin)

where d,f" “¢ is the distance between the C;p atoms of the
contact residues i and ;.

2.2.3 Combining all energy terms

The energy function is built by combining all energy
terms as below;

E= EDFIRE +w Eartmctive + w> Erepulsive (8)

where the weight factors, w, and w,, are set to 0.2 and 1.0,
respectively.

The DFIRE-based potential is derived from all-atom
interactions while the last two terms are calculated from
residue-based interactions. The interacting proteins usually
undergo conformational changes of their side-chains and/or
backbones, which can not be described by DFIRE energy
function. We have added the residue-based contact energy
terms to the DFIRE potential in order to give sofiness to the
rigid unbound protein-protein docking. We hope that the
near-native complexes remain in the final bank with help of
favored residue-contact interactions, even though their
DFIRE-based interaction is unfavorable.

2.3 Unbound Protein-Protein Docking

To evaluate the performance of CSA docking coupled
with the statistical pairwise energy function, we prepared
the test set containing 12 unbound protein complexes of
relatively small size (less than 300 residues) and dimer
molecules from the benchmark0.0 developed by Chen et
al.”! The CSA docking was initiated by generating the first
bank containing 200 randomly generated and minimized
docked complexes. The number of seed conformations was
100. For each seed conformation, 5 perturbed
conformations were generated (3 by replacing the
translational vector and 2 by replacing the Euler angles).
‘Therefore, a total of 500 perturbed conformations were
generated, and they were energy-minimized to obtain trial
conformations. Using these trial conformations, the bank
was updated. The rest of procedure is as explained above in
the section 2.1. The CSA search continued until the bank
size became larger than the maximum size of 400 so that we
could have 400 decoys for each complex.

The energies of the complex conformers generated

during the CSA search were minimized by the quenching
method. The energy function used in this work is a discrete
statistical pairwise potential which can not be minimized
using the energy gradient-based methods. The energies were
quenched to be lower through small random moves such as
translations (£1A) and rotations (+3°). Only the moves
which were able to lower the energy were accepted and the
minimization process was ended when 50 moves were
successively rejected. The maximum allowed number of
moves is set to 200 for each conformer generated by the
CSA operation.

3 RESULTS

The performance of the CSA docking is com})ared with
that of ZDOCK (specifically ZDOCK1.3),” one of
well-known protein-protein docking tools. The energy
function in ZDOCK1.3 has three terms: grid-based shape
complementarity, desolvation, and electrostatics. For
simplicity, the term ZDOCK is just used to refer to
ZDOCK1.3. The evaluation of protein docking performance
is typically made based on the root mean squared deviation
(RMSD) values of decoy complexes from the native
complex structure, and the fractions of the native
residue-residue contacts of the decoy structures. The
near-native structures are defined as the structures whose
RMSD values are less than 10 A, or whose native
residue-residue contact fractions are greater than 25%.
Another criterion for determining the near-native structure
is the RMSD calculated over the C, atoms of interface
residues, which are residue pairs between receptor and
ligand with at least one inter-residue heavy atom pairs less
than 10 A. Decoy with the C,-RMSD less than 2.5 A is
considered a near-native structure. We have used the
C-RMSD value for performance evaluation of the CSA
docking.

CSA dock ZDOCK1.3
(400-decoy set)  (1000/2000-decoy set)’
PDBID No._ of Highest No.. of Highest
native rank® native rank®

hits” hits”
1A00 1 116 4/9 619
1ACB 1 47 154/199 3
1AVZ - - - -
1BRC 1 71 9/24 52
1BRS 3 2 -/3 -/1019
1CGI 1 27 43/77 3
1CHO 1 43 53/93 22
IMEL 2 58 19/32 9
1PPE 6 1 257 /318 1
1TAB 2 40 - -
1TGS 2 12 60 /86 5
2PTC 1 248 38 /62 65

Table 1. Performance comparison between the CSA dock
and ZDOCK1.3

#Only top-1000 decoys and top-2000 decoys (1000decoys/2000
decoys) are taken out of the first 54,000 decoys predicted by
ZDOCKI1.3 using the energy function consisting of grid-based
shape complementarity, desolvation, and electrostatics. ® No.
of native hits are defined as the number of docked complexes
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with interface Cot~-RMSD less than 2.5A. The first value is the
number from the top-1000 decoy set and the second is the
number from the top-2000 decoy set. © Highest rank represents
the first energetic rank of the near-native structures obtained
from the CSA dock and ZDOCKI.3. The numbers are shown
first from the top 1000 decoy set and second from the top 2000
decoy set.

Table 1 shows the comparison of docking performance
between the ZDOCK and the CSA methods. The CSA
docking produced 400 docking decoys in the final bank,
which are compared with the top-1000 decoys and the
top-2000 decoys out of the first 54,000 decoys predicted by
the ZDOCK method. The CSA gave at least one near-native
decoy in the final 400-decoy set except one case of 1AVZ
whereas the ZDOCK were unable to find near-natives
structure from the 1000-decoy set for three cases (1AVZ,
1BRS and 1TAB) and from 2000-decoy set for two cases
(1AVZ and 1TAB) even though the sizes of decoy sets of
ZDOCK were much larger than that of CSA. For some
cases such as 1ACB, 1CGI, 1CHO, 1MEL, 1PPE, 1TGS
and 2PTC, however, ZDOCK shows relatively much more
hits of near-native structures. This mainly originates from
the difference of the way the two methods generate the
decoy set of protein complexes. ZDOCK performs the
grid-based search of conformations of protein-protein
complex and keeps decoys with a certain number of top
ranked energies in the final decoy set. Some decoys in the
decoy set can be very similar to each other. However, the
CSA docking carries out a rigorous conformational search
maintaining structural diversity to give a collection of
structurally dissimilar and locally minimized conformers. If
some decoys are structurally close to each other within a d_,,,
one with lower energy remains in the updated bank while
the other is discarded. The rank of near-native structures
given by the CSA is higher for three cases (1A00, 1BRS
and 1TAB). The ranks for 1A00 are 116th (CSA) and 619th
(ZDOCK). For 1BRS, the ranks are 2nd by the CSA and
1019th only available from the top-2000 ZDOCK decoys.
For 1TAB, the rank from the CSA is 40th where the ranks
from either the top-1000 decoys or the-2000 decoys are not
available. For the 1PPE case (1PPE) which is the easiest
application, the near-native structures obtained from the two
methods are energetically ranked as the first. For the other
complexes, the ranks given by ZDOCK are higher.

4 CONCLUSION AND DISCUSSIONS

We have developed a new protein-protein docking method
using the CSA coupled with statistical pairwise potentials. The
CSA is able to carry out a rigorous conformational search of
two interacting proteins to eventually produce a given number
of distinct families of low-energy conformations of docked
complexes. The energy function built with the statistical
pairwise potentials, i.e. database-derived score function,
consists of the DFIRE-base all-atom pairwise statistical
potential, residue-based attractive and repulsive contact
energies. The DFIRE-based energy helps make an accurate
description of all-atom interactions between the two rigid
bodies while the last two residue-based energy terms favor the
residue-residue interactions within a certain range of contact
distance. We have tried to give softness to the unbound
rigid-body docking by combining all energy components since
the interacting proteins may undergo conformational changes

upon their association. 12 relatively small and dimeric
unbound-proteins were taken from the benchmark0.0. We have
carried out the CSA docking over the 12 test protein-pairs and
subsequently compared the performance between the CSA and
the ZDOCK methods. The results show that the CSA has a
higher probability of having a near-native structure in the final
decoy set than the ZDOCK because the CSA operation
maintains a structural diversity in the bank. On the other hand,
the ranks of near-native structures given by ZDOCK are
generally higher than those given by the CSA docking. It is
understood that these observations largely results from the
differences of the conformational search methods and the
energy functions used by the two docking tools.

The unbound rigid docking has an essential limitation
that it cannot model the flexible motions of the interacting
proteins. Modeling the protein’s flexibility in
protein-protein docking by torsional changes is almost
impossible in reality because the number of degree of
freedoms considered becomes tremendously large. However,
the limitation can be alleviated partially by introducing the
softness provided by the energy function into the interaction
of the protein pair. Any energy functions used for these
docking problems can not describe the protein-protein
interaction perfectly. Therefore, one possible way to
approach the solution is to generate a decoy set with
structural diversity, in which each structure can be a
representative of a local conformational space well-screened
by the given energy function. Our major efforts into this
work is not only providing a structural diversity to the
gencrated decoy set using CSA, but also introducing
sofiness given by the statistical pairwise potential into the
rigid-body docking, in order to locate at least one
near-native structure in the decoy set. The next step that we
need to move on is to improve the docking accuracy to
select the right near-native structure from the decoy set.
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