• Title/Summary/Keyword: Protein-receptor interactions

Search Result 113, Processing Time 0.027 seconds

Mass Spectrometry-Based Screening Platform Reveals Orco Interactome in Drosophila melanogaster

  • Yu, Kate E.;Kim, Do-Hyoung;Kim, Yong-In;Jones, Walton D.;Lee, J. Eugene
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.150-159
    • /
    • 2018
  • Animals use their odorant receptors to receive chemical information from the environment. Insect odorant receptors differ from the G protein-coupled odorant receptors in vertebrates and nematodes, and very little is known about their protein-protein interactions. Here, we introduce a mass spectrometric platform designed for the large-scale analysis of insect odorant receptor protein-protein interactions. Using this platform, we obtained the first Orco interactome from Drosophila melanogaster. From a total of 1,186 identified proteins, we narrowed the interaction candidates to 226, of which only two-thirds have been named. These candidates include the known olfactory proteins Or92a and Obp51a. Around 90% of the proteins having published names likely function inside the cell, and nearly half of these intracellular proteins are associated with the endomembrane system. In a basic loss-of-function electrophysiological screen, we found that the disruption of eight (i.e., Rab5, CG32795, Mpcp, Tom70, Vir-1, CG30427, Eaat1, and CG2781) of 28 randomly selected candidates affects olfactory responses in vivo. Thus, because this Orco interactome includes physiologically meaningful candidates, we anticipate that our platform will help guide further research on the molecular mechanisms of the insect odorant receptor family.

Investigation of the Binding Force between Protein A and Immunoglobulin G Using Dielectrophoretic(DEP) Tweezers Inside a Microfluidic Chip (미세유체 칩 내에서 유전영동 집게(Dielectrophoretic Tweezers) 를 이용한 단백질A와 면역 글로불린 G의 결합에 관한 연구)

  • Kwak, Tae Joon;Lee, Jae Woo;Yoon, Dae Sung;Lee, Sang Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • The 'Dielectrophoretic Tweezers(DEP Tweezers)' can be used as a facile, economical toolkit for quantitative measurement of chemical and biological binding forces related to many biological interactions within a microfluidic device. Our experimental setup can probe the interaction between a single receptor molecule and its specific ligand. Immunoglobulin G(IgG) functionalized on polystyrene microspheres has been used to detect individual surface linked Staphylococcus protein A(SpA) molecules and to characterize the strength of the noncovalent IgG-SpA bond. It was measured and compared with the existing measurements. Measured single binding force of between Goat, Rabbit IgG and SpA were $17{\pm}7pN$, $74{\pm}16pN$. This work can be used to investigate several different ligand-receptor interactions and antigen-antibody interactions.

Computational evaluation of interactions between olfactory receptor OR2W1 and its ligands

  • Oh, S. June
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.9.1-9.5
    • /
    • 2021
  • Mammalian olfactory receptors are a family of G protein-coupled receptors (GPCRs) that occupy a large part of the genome. In human genes, olfactory receptors account for more than 40% of all GPCRs. Several types of GPCR structures have been identified, but there is no single olfactory receptor whose structure has been determined experimentally to date. The aim of this study was to model the interactions between an olfactory receptor and its ligands at the molecular level to provide hints on the binding modes between the OR2W1 olfactory receptor and its agonists and inverse agonists. The results demonstrated the modes of ligand binding in a three-dimensional model of OR2W1 and showed a statistically significant difference in binding affinity to the olfactory receptor between agonists and inverse agonists.

Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis

  • Zhang, Xiaohan;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.26-43
    • /
    • 2017
  • Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with ${\beta}$-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.

A Structure-Based Activation Model of Phenol-Receptor Protein Interactions

  • 이경희
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 1997
  • Data from structure/activity studies in vir gene induction system have led to evaluate the working hypothesis of interaction between phenolic inducers and phenol binding proteins. The primary specificity in the association of a phenolic inducer with its receptor in our system is hypothesized to be the hydrogen bonding interactions through the ortho methoxy substituents as well as the proton transfer between the inducer and the binding protein. In this paper the proposed working model for phenol-mediating signal transduction was evaluated in several ways. The importance of the general acid-base catalysis was first addressed by the presence of an acidic residue and a basic residue in the phenol binding protein. Series of compounds were tested for vir gene expression activity to confirm the generation of a strong nucleophile by an acidic residue and an involvement of a basic residue as a proton acceptor. An attempt was made to correlate the pKa values of the phenolic compounds with vir gene induction activities as inducers to further support the proposed proton transfer mechanism. Finally, it was also observed that the regioselectively attached methoxy group on phenol compounds is required as the proper hydrogen bond acceptor.

Implications of the simple chemical structure of the odorant molecules interacting with the olfactory receptor 1A1

  • Oh, S. June
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.18.1-18.8
    • /
    • 2021
  • G protein–coupled receptors (GPCRs), including olfactory receptors, account for the largest group of genes in the human genome and occupy a very important position in signaling systems. Although olfactory receptors, which belong to the broader category of GPCRs, play an important role in monitoring the organism's surroundings, their actual three-dimensional structure has not yet been determined. Therefore, the specific details of the molecular interactions between the receptor and the ligand remain unclear. In this report, the interactions between human olfactory receptor 1A1 and its odorant molecules were simulated using computational methods, and we explored how the chemically simple odorant molecules activate the olfactory receptor.

Characterization of Ca2+-Dependent Protein-Protein Interactions within the Ca2+ Release Units of Cardiac Sarcoplasmic Reticulum

  • Rani, Shilpa;Park, Chang Sik;Sreenivasaiah, Pradeep Kumar;Kim, Do Han
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.149-155
    • /
    • 2016
  • In the heart, excitation-contraction (E-C) coupling is mediated by $Ca^{2+}$ release from sarcoplasmic reticulum (SR) through the interactions of proteins forming the $Ca^{2+}$ release unit (CRU). Among them, calsequestrin (CSQ) and histidine-rich $Ca^{2+}$ binding protein (HRC) are known to bind the charged luminal region of triadin (TRN) and thus directly or indirectly regulate ryanodine receptor 2 (RyR2) activity. However, the mechanisms of CSQ and HRC mediated regulation of RyR2 activity through TRN have remained unclear. We first examined the minimal KEKE motif of TRN involved in the interactions with CSQ2, HRC and RyR2 using TRN deletion mutants and in vitro binding assays. The results showed that CSQ2, HRC and RyR2 share the same KEKE motif region on the distal part of TRN (aa 202-231). Second, in vitro binding assays were conducted to examine the $Ca^{2+}$ dependence of protein-protein interactions (PPI). The results showed that TRN-HRC interaction had a bell-shaped $Ca^{2+}$ dependence, which peaked at pCa4, whereas TRN-CSQ2 or TRN-RyR2 interaction did not show such $Ca^{2+}$ dependence pattern. Third, competitive binding was conducted to examine whether CSQ2, HRC, or RyR2 affects the TRN-HRC or TRN-CSQ2 binding at pCa4. Among them, only CSQ2 or RyR2 competitively inhibited TRN-HRC binding, suggesting that HRC can confer functional refractoriness to CRU, which could be beneficial for reloading of $Ca^{2+}$ into SR at intermediate $Ca^{2+}$ concentrations.

Protein tyrosine phosphatase PTPRT as a regulator of synaptic formation and neuronal development

  • Lee, Jae-Ran
    • BMB Reports
    • /
    • v.48 no.5
    • /
    • pp.249-255
    • /
    • 2015
  • PTPRT/RPTPρ is the most recently isolated member of the type IIB receptor-type protein tyrosine phosphatase family and its expression is restricted to the nervous system. PTPRT plays a critical role in regulation of synaptic formation and neuronal development. When PTPRT was overexpressed in hippocampal neurons, synaptic formation and dendritic arborization were induced. On the other hand, knockdown of PTPRT decreased neuronal transmission and attenuated neuronal development. PTPRT strengthened neuronal synapses by forming homophilic trans dimers with each other and heterophilic cis complexes with neuronal adhesion molecules. Fyn tyrosine kinase regulated PTPRT activity through phosphorylation of tyrosine 912 within the membrane-proximal catalytic domain of PTPRT. Phosphorylation induced homophilic cis dimerization of PTPRT and resulted in the inhibition of phosphatase activity. BCR-Rac1 GAP and Syntaxin-binding protein were found as new endogenous substrates of PTPRT in rat brain. PTPRT induced polymerization of actin cytoskeleton that determined the morphologies of dendrites and spines by inhibiting BCR-Rac1 GAP activity. Additionally, PTPRT appeared to regulate neurotransmitter release through reinforcement of interactions between Syntaxin-binding protein and Syntaxin, a SNARE protein. In conclusion, PTPRT regulates synaptic function and neuronal development through interactions with neuronal adhesion molecules and the dephosphorylation of synaptic molecules. [BMB Reports 2015; 48(5): 249-255]

Identification of Two Isoforms of Aminopeptidase N in Aedes aegypti Larval Midgut

  • Pootanakit, Kusol;Angsuthanasombat, Chanan;Panyim, Sakol
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.508-513
    • /
    • 2003
  • The bacterium Bacillus thuringiensis produces toxin inclusions that are deleterious to target insect larvae. These toxins are believed to interact with a specific receptor protein(s) that is present on the gut epithelial cells of the larvae. In various insect species (in particular those belonging to the lepidopteran class), aminopeptidase N (APN) is one of the two receptor proteins that are considered to be involved in toxin-receptor interactions. However, in mosquitoes, the nature and identity of the receptor protein is unknown. Here, using RT-PCR, we identified two isoforms of the APN transcripts in the Aedes aegypti mosquito larval midgut. These results are congruent with a previous report of multiple isoforms of the APN gene expression in lepidopteran larvae. Which of the two isoforms (or other yet unidentified receptor proteins) is involved in the killing of mosquito larvae remains to be elucidated.

Structural Characteristics of the Putative Protein Encoded by Arabidopsis AtMTN3 Gene

  • Cheong, Jong-Joo;Kwon, Hawk-Bin;Kim, Minkyun
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.125-130
    • /
    • 2001
  • A putative protein encoded by Arabidopsis AtMTN3 gene, a homologue of Medicago truncatula MTN3, consists of 285 amino acid residues, and has a predicted molecular mass of 31.5 kDa and a calculated pI of 9.1. Primary amino acid sequence analyses have revealed that the protein contains seven putative transmembrane regions with N-terminus oriented to the outside of the membrane. The AtMTN3 protein shows overall 16.4% of amino acid identity with the rat GALR3 protein, known to be a G-protein-coupled receptor. The gene is present as a single copy in the Arabidopsis genome, and expressed in aerial parts but not in roots of Arabidopsis. Therefore, AtMTN3 appears not to be specifically involved in Rhizobium-induced nodule development, as was predicted for the MTN3 gene. These proteins possibly mediate signal transmission through G-protein-coupled pathways during general interactions between plants and symbiotic or pathogenic microbes.

  • PDF