Browse > Article
http://dx.doi.org/10.14348/molcells.2016.2284

Characterization of Ca2+-Dependent Protein-Protein Interactions within the Ca2+ Release Units of Cardiac Sarcoplasmic Reticulum  

Rani, Shilpa (School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology)
Park, Chang Sik (School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology)
Sreenivasaiah, Pradeep Kumar (School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology)
Kim, Do Han (School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology)
Abstract
In the heart, excitation-contraction (E-C) coupling is mediated by $Ca^{2+}$ release from sarcoplasmic reticulum (SR) through the interactions of proteins forming the $Ca^{2+}$ release unit (CRU). Among them, calsequestrin (CSQ) and histidine-rich $Ca^{2+}$ binding protein (HRC) are known to bind the charged luminal region of triadin (TRN) and thus directly or indirectly regulate ryanodine receptor 2 (RyR2) activity. However, the mechanisms of CSQ and HRC mediated regulation of RyR2 activity through TRN have remained unclear. We first examined the minimal KEKE motif of TRN involved in the interactions with CSQ2, HRC and RyR2 using TRN deletion mutants and in vitro binding assays. The results showed that CSQ2, HRC and RyR2 share the same KEKE motif region on the distal part of TRN (aa 202-231). Second, in vitro binding assays were conducted to examine the $Ca^{2+}$ dependence of protein-protein interactions (PPI). The results showed that TRN-HRC interaction had a bell-shaped $Ca^{2+}$ dependence, which peaked at pCa4, whereas TRN-CSQ2 or TRN-RyR2 interaction did not show such $Ca^{2+}$ dependence pattern. Third, competitive binding was conducted to examine whether CSQ2, HRC, or RyR2 affects the TRN-HRC or TRN-CSQ2 binding at pCa4. Among them, only CSQ2 or RyR2 competitively inhibited TRN-HRC binding, suggesting that HRC can confer functional refractoriness to CRU, which could be beneficial for reloading of $Ca^{2+}$ into SR at intermediate $Ca^{2+}$ concentrations.
Keywords
calsequestrin; histidine rich $Ca^{2+}$ binding protein; and triadin; junctin; ryanodine receptor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Arvanitis, D.A., Vafiadaki, E., Fan, G.C., Mitton, B.A., Gregory, K.N., Del Monte, F., Kontrogianni-Konstantopoulos, A., Sanoudou, D., and Kranias, E.G. (2007). Histidine-rich Ca-binding protein interacts with sarcoplasmic reticulum Ca-ATPase. Am. J. Physiol. Heart Circ. Physiol. 293, H1581-1589.   DOI
2 Beard, N.A., Casarotto, M.G., Wei, L., Varsanyi, M., Laver, D.R., and Dulhunty, A.F. (2005). Regulation of ryanodine receptors by calsequestrin: effect of high luminal $Ca^{2+}$ and phosphorylation. Biophys. J. 88, 3444-3454.   DOI
3 Bers, D.M. (2002). Cardiac excitation-contraction coupling. Nature 415, 198-205.   DOI
4 Boncompagni, S., Thomas, M., Lopez, J.R., Allen, P.D., Yuan, Q., Kranias, E.G., Franzini-Armstrong, C., and Perez, C.F. (2012). Triadin/Junctin double null mouse reveals a differential role for Triadin and Junctin in anchoring CASQ to the jSR and regulating Ca(2+) homeostasis. PLoS One 7, e39962.   DOI
5 Fan, G.C., Gregory, K.N., Zhao, W., Park, W.J., and Kranias, E.G. (2004). Regulation of myocardial function by histidine-rich, calcium-binding protein. Am. J. Physiol. Heart Circ. Physiol. 287, H1705-1711.   DOI
6 Franzini-Armstrong, C., Protasi, F., and Tijskens, P. (2005). The assembly of calcium release units in cardiac muscle. Ann. N. Y. Acad. Sci. 1047, 76-85.   DOI
7 Goonasekera, S.A., Beard, N.A., Groom, L., Kimura, T., Lyfenko, A.D., Rosenfeld, A., Marty, I., Dulhunty, A.F., and Dirksen, R.T. (2007). Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. J. Gen. Physiol. 130, 365-378.   DOI
8 Guo, W., and Campbell, K.P. (1995). Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. J. Biol. Chem. 270, 9027-9030.   DOI
9 Guo, W., Jorgensen, A.O., Jones, L.R., and Campbell, K.P. (1996). Biochemical characterization and molecular cloning of cardiac triadin. J. Biol. Chem. 271, 458-465.   DOI
10 Gyorke, I., Hester, N., Jones, L.R., and Gyorke, S. (2004). The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys. J. 86, 2121-2128.   DOI
11 Hasenfuss, G., Meyer, M., Schillinger, W., Preuss, M., Pieske, B., and Just, H. (1997). Calcium handling proteins in the failing human heart. Basic Res. Cardiol. 92 Suppl 1, 87-93.
12 Jones, L.R., Zhang, L., Sanborn, K., Jorgensen, A.O., and Kelley, J. (1995). Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum. J. Biol. Chem. 270, 30787-30796.   DOI
13 Kim, E., Shin, D.W., Hong, C.S., Jeong, D., Kim, D.H., and Park, W.J. (2003). Increased $Ca^{2+}$ storage capacity in the sarcoplasmic reticulum by overexpression of HRC (histidine-rich $Ca^{2+}$ binding protein). Biochem. Biophys. Res. Commun. 300, 192-196.   DOI
14 Kim, T., Kahng, Y.H., Lee, T., Lee, K., and Kim, D.H. (2013). Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells. Mol. Cells 36, 577-582.   DOI
15 Knollmann, B.C. (2009). New roles of calsequestrin and triadin in cardiac muscle. J. Physiol. 587, 3081-3087.   DOI
16 Kobayashi, Y.M., Alseikhan, B.A., and Jones, L.R. (2000). Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein-protein interaction. J. Biol. Chem. 275, 17639-17646.   DOI
17 Lehnart, S.E., Maier, L.S., and Hasenfuss, G. (2009). Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail. Rev. 14, 213-224.   DOI
18 Lee, H.G., Kang, H., Kim, D.H., and Park, W.J. (2001). Interaction of HRC (histidine-rich $Ca^{2+}$-binding protein) and triadin in the lumen of sarcoplasmic reticulum. J. Biol. Chem. 276, 39533-39538.   DOI
19 Lee, E.H., Rho, S.H., Kwon, S.J., Eom, S.H., Allen, P.D., and Kim, D.H. (2004a). N-terminal region of FKBP12 is essential for binding to the skeletal ryanodine receptor. J. Biol. Chem. 279, 26481-26488.   DOI
20 Lee, J.M., Rho, S.H., Shin, D.W., Cho, C., Park, W.J., Eom, S.H., Ma, J., and Kim, D.H. (2004b). Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin. J. Biol. Chem. 279, 6994-7000.   DOI
21 Liu., B., Ho., H.T., Brunello., L., Unudurthi., S.D., Lou., Q., Belevych., A.E., Qian., L., Kim, D.H., Cho., C., Janssen., P.M.L., et al. (2015). Ablation of HRC alleviates cardiac arrhythmia and improves abnormal Ca handling in CASQ2 knockout mice prone to CPVT. Cardiovasc. Res. [in press].
22 Park, C.S., Cha, H., Kwon, E.J., Jeong, D., Hajjar, R.J., Kranias, E.G., Cho, C., Park, W.J., and Kim, D.H. (2012). AAV-mediated knock-down of HRC exacerbates transverse aorta constrictioninduced heart failure. PLoS One 7, e43282.   DOI
23 Picello, E., Damiani, E., and Margreth, A. (1992). Low-affinity $Ca^{2+}$- binding sites versus Zn(2+)-binding sites in histidine-rich $Ca^{2+}$- binding protein of skeletal muscle sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 186, 659-667.   DOI
24 Shin, D.W., Ma, J., and Kim, D.H. (2000). The asp-rich region at the carboxyl-terminus of calsequestrin binds to $Ca^{2+}$ and interacts with triadin. FEBS Lett. 486, 178-182.   DOI
25 Postma, A.V., Denjoy, I., Hoorntje, T.M., Lupoglazoff, J.M., Da Costa, A., Sebillon, P., Mannens, M.M., Wilde, A.A., and Guicheney, P. (2002). Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 91, e21-26.   DOI
26 Priori, S.G., and Napolitano, C. (2005). Cardiac and skeletal muscle disorders caused by mutations in the intracellular $Ca^{2+}$ release channels. J. Clin. Invest. 115, 2033-2038.   DOI
27 Sacchetto, R., Damiani, E., Turcato, F., Nori, A., and Margreth, A. (2001). $Ca^{2+}$-dependent interaction of triadin with histidine-rich $Ca^{2+}$-binding protein carboxyl-terminal region. Biochem. Biophys. Res. Commun. 289, 1125-1134.   DOI
28 Wium, E., Dulhunty, A.F., and Beard, N.A. (2012). A skeletal muscle ryanodine receptor interaction domain in triadin. PLoS One 7, e43817.   DOI
29 Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A.H., Craig, A.M., and Sheng, M. (1997). Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385, 439-442.   DOI
30 Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y.M., and Jones, L.R. (1997). Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J. Biol. Chem. 272, 23389-23397.   DOI