• Title/Summary/Keyword: Protein profile

Search Result 754, Processing Time 0.029 seconds

Profiling of differential expressed proteins from various explants in Platycodon grandiflorum

  • Kim, Hye-Rim;Kwon, Soo Jeong;Roy, Swapan Kumar;Kamal, Abu Hena Mostafa;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Cho, Kab Yeon;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.131-131
    • /
    • 2017
  • Though the Platycodon grandiflorum, has a broad range of pharmacologic properties, but the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two-dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}2-fold$) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, the frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). Taken together, the protein profile may provide insight clues for better understanding the characteristics of proteins and its metabolic activities in various explants of this essential medicinal plant P. grandiflorum.

  • PDF

Proteome characterization of hormone-induced diploid and tetraploid roots of Platycodon grandiflorum

  • Kwon, Soo Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Song, Beom-Heon;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.132-132
    • /
    • 2017
  • Plants, including Platycodon grandiflorum have been used globally across varied cultures as a safe natural source of medicines. From time immemorial, humans have relied on plants that could meet their basic necessities such as food, shelter, fuel and health. This study was executed to profile proteins from the hormone induced diploid and tetraploid roots using high throughput proteome approach. Two dimensional gels stained with CBB, a total of 64 differential expressed proteins were identified from the diploid root using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 20 differential expressed protein spots ( ${\geq}1.5-fold$) were analyzed using LTQ-FTICR MS whereas a total of 13 protein spots were up regulated and 7 protein spots were down-regulated. However, in the case of tetraploid root, a total of 78 differential expressed proteins were identified from tetraploid root of which a total of 28 differential expressed protein spots (${\geq}1.5-fold$) were analyzed by mass spectrometry whereas a total of 16 protein spots were up regulated and a total of 12 protein spots were down-regulated. However, proteins identified using iProClass databases revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding, oxidoreductase activity, transporter activity and isomers activity. The exclusive protein profile may provide insight clues for better understanding the characteristics of protein function and its metabolic activity that can help for the development of the nutritional and breeding aspects of this economically important medicinal plant.

  • PDF

Proteome Profiling Unfurl Differential Expressed Proteins from Various Explants in Platycodon Grandiflorum

  • Kim, Hye-Rim;Kwon, Soo-Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag-Hyun;Cho, Kab-Yeon;Boo, Hee-Ock;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • Platycodon grandiflorum, commonly known as Doraji in Korea, has a wide range of pharmacologic properties, such as reducing adiposity and hyperlipidemia, and antiatherosclerotic effects. However, the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}$ 2-fold) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). In that way, the exclusive protein profile may provide insight clues for better understanding the characteristics of proteins and metabolic activity in various explants of the economically important medicinal plant Platycodon grandiflorum.

Transcription Profiles of Human Cells in Response to Sodium Arsenite Exposure

  • Lee, Te-Chang;Konan Peck;Yih, Ling-Huei
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.59-69
    • /
    • 2001
  • Arsenic exposure is associated with several human diseases, including cancers, atherosclerosis, hypertension, and cerebrovascular diseases. In cultured cells, arsenite, an inorganic arsenic com-pound, was demonstrated to interfere with many physiological functions, such as enhancement of oxidative stress, delay of cell cycle progression, and induction of structural and numerical changes of chromosomes. The objective of this study is to investigate the effects of arsenic exposure on gene expression profiles by colorimetric cDNA microarray technique. HFW (normal human diploid skin fibroblasts), CL3 (human lung adenocarcinoma cell line), and HaCaT (immortalized human keratinocyte cell line) were treated with 5 $\mu\textrm{M}$ or 10 $\mu\textrm{M}$ sodium arsenite for 6 or 16 h, respectively. By a dual-color detection system, the expression profile of arsenite-treated cultures was compared to that of control cultures. Several genes expressed differentially were identified on the microarray membranes. For example, MDM2, SWI/SNF, ubiquitin specific protease 4, MAP3K11, RecQ protein-like 5, and Ribosomal protein Ll0a were consistently induced in all three cell types by arsenite, whereas prohibitin, cyclin D1, nucleolar protein 1, PCNA, Nm23, and immediate early protein (ETR101) were apparently inhibited. The present results suggest that arsenite insults altered the expression of several genes participating in cellular responses to DNA damage, stress, transcription, and cell cycle arrest.

  • PDF

Blood Biochemical Profile and Rumen Fermentation Pattern of Goats Fed Leaf Meal Mixture or Conventional Cakes as Dietary Protein Supplements

  • Anbarasu, C.;Dutta, Narayan;Sharma, K.;Naulia, Uma
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.665-670
    • /
    • 2002
  • The expediency of replacing cost prohibitive and often inaccessible traditional protein supplements prompted the monitoring of hematological parameters was carried out in female goats at 0, 30, 60 and 90 days post feeding. Rumen environment was (3), respectively fed supplements containing either a leaf meal mixture (LMTM) of Leucaena leucocephala-Morus alba-Tectona grandis (2:1:1) or traditional protein supplements groundnut cake (GNC) or soybean meal (SBM) and wheat straw as basal diet. The periodic monitoring of hematological parameters was carried out in female goats at 0, 30, 60 and 90 days post feeding. Rumen environment was studied in bucks in a $3{\times}3$ switch over design. Rumen liquor was collected at 0, 2, 4, 6 and 8 h post feeding after 4 weeks of feeding. The goats fed on LMTM or GNC had similar dry matter intake (g/kg $W^{0.75}$), which was significantly (p<0.05) higher than SBM. Except for packed cell volume (PCV), none of the blood biochemical constituents (Hemoglobin, serum glucose, total protein, serum albumin (A) and globulin(G), A:G ratio, alkaline phosphatase, transaminases) varied significantly due to replacement of 50% dietary protein by LMTM throughout the experiment. GNC group had significantly higher level of PCV than other treatments. However, the level of serum total protein (p<0.01) tended to increase from 60th day onwards irrespective of dietary treatments. The average rumen pH was significantly higher (p<0.001) on SBM followed by LMTM and GNC, respectively. Total volatile fatty acid (TVFA) production was comparable in goats given LMTM or GNC supplements, the corresponding values were significantly different (p<0.001) when compared with SBM. The ammonical-N, total-N and TCA-precipitable-N (mg/100 ml SRL) did not differ significantly among dietary treatments. It may be concluded that supplementing wheat straw with LMTM based concentrate had no adverse effect on voluntary intake, blood biochemical profile and rumen fermentation pattern of the goats.

Effect of the Dietary Protein Level on Plasma Glucose, Lipids and Hormones in Streptozotocin-Diabetic Rats

  • Han Yung Joo
    • Journal of Nutrition and Health
    • /
    • v.26 no.7
    • /
    • pp.851-857
    • /
    • 1993
  • Atherosclerotic vascular disease is a major cause of the increased morbidity and mortality assciated with diabetes mellitus. The prominent role of nutrition in hypercholesteolemia and atherosclerosis is generally accepted. Diet is a key element in the management of diabetes (type I-IDDM), yet the appropriate diet for patient with diabetes mellitus is not well known. Dietary protein has been shown to have a significant effect on plasma cholesterol levels in both experimental animals and humans. The present experiment was designed to determine the effect of the dietary protein level(20% vs 60%) on plasma glucose concentration, lipids profile, insulin and glucagon levels from non-diabetic and streptozotocin-induced diabetic rats. Results showed that a high protein diet decreased triglyceride concentration in diabetic rats. Also diabetic rats fed a high protein diet were hypocholesterolemic than rats fed a control diet. There were no effects by level of protein on fasting blood glucose concentration and insulin/glucagon ratio. Results from the present study suggest that a high protein diet may be beneficial to control pasma lipids in chemically-induced diabetic rats.

  • PDF

Evaluation of Chemical-Nutritional Characteristics of Whey and Ricotta Obtained by Ewes Fed Red Grape Pomace Dietary Supplementation

  • Bennato, Francesca;Ianni, Andrea;Grotta, Lisa;Martino, Giuseppe
    • Food Science of Animal Resources
    • /
    • v.42 no.3
    • /
    • pp.504-516
    • /
    • 2022
  • This study aimed to investigate the effect on the chemical quality of whey and Ricotta obtained from ewes fed a red grape pomace (GP) dietary supplementation. The analyses were performed on whey, before and post Ricotta cheese-making, and in Ricotta after 1 (T1) and 5 (T5) d of ripening at 4℃. Moreover, fatty acid profile of whey before ricotta (WBR) cheese-making and Ricotta T1 of ripening and volatile profile of Ricotta T1 and T5 were investigated. The diet did not affect whey and Ricotta lipid content, conversely, significant variations were instead observed with regard to color. A lower amount of total phenolic compounds was found in WBR cheese-making, on the contrary, an opposite trend was highlighted in Ricotta T1 although no variations in antioxidant properties were detected. Moreover, GP modified fatty acid profile of whey and Ricotta but did not have any effect on protein profile of the main whey protein. The reduction of hexanal in Ricotta during the ripening suggest a better oxidative stability. The obtained results therefore suggested that the GP inclusion in the ewes diet, while modifying some chemical parameters, did not induce negative effects on the characteristics and quality of dairy by-products.

Effects of fermentation on protein profile of coffee by-products and its relationship with internal protein structure measured by vibrational spectroscopy

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1190-1198
    • /
    • 2023
  • Objective: To our knowledge, there are few studies on the correlation between internal structure of fermented products and nutrient delivery from by-products from coffee processing in the ruminant system. The objective of this project was to use advanced mid-infrared vibrational spectroscopic technique (ATR-FT/IR) to reveal interactive correlation between protein internal structure and ruminant-relevant protein and energy metabolic profiles of by-products from coffee processing affected by added-microorganism fermentation duration. Methods: The by-products from coffee processing were fermented using commercial fermentation product, called Saus Burger Pakan, consisting of various microorganisms: cellulolytic, lactic acid, amylolytic, proteolytic, and xylanolytic microbes, for 0, 7, 14, 21, and 28 days. Protein chemical profiles, Cornell Net Carbohydrate and Protein System crude protein and CHO subfractions, and ruminal degradation and intestinal digestion of protein were evaluated. The attenuated total reflectance-Ft/IR (ATR-FTIR) spectroscopy was used to study protein structural features of spectra that were affected by added microorganism fermentation duration. The molecular spectral analyses were carried using OMNIC software. Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included: Amide I area (AIA), Amide II (AIIA) area, Amide I heigh (AIH), Amide II height (AIIH), α-helix height (αH), β-sheet height (βH), AIA to AIIA ratio, AIH to AIIH ratio, and αH to βH ratio. The relationship between protein structure spectral profiles of by-products from coffee processing and protein related metabolic features in ruminant were also investigated. Results: Fermentation decreased rumen degradable protein and increased rumen undegradable protein of by-products from coffee processing (p<0.05), indicating more protein entering from rumen to the small intestine for animal use. The fermentation duration significantly impacted (p<0.05) protein structure spectral features. Fermentation tended to increase (p<0.10) AIA and AIH as well as β-sheet height which all are significantly related to the protein level. Conclusion: Protein structure spectral profiles of by-product form coffee processing could be utilized as potential evaluators to estimate protein related chemical profile and protein metabolic characteristics in ruminant system.

Effect of Dietary Protein Levels on the Performance, Nutrient Balances, Metabolic Profile and Thyroid Hormones of Crossbred Calves

  • Lohakare, J.D.;Pattanaik, A.K.;Khan, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1588-1596
    • /
    • 2006
  • An experiment was conducted to study the effect of different dietary protein levels on the performance, nutrient balances, blood biochemical parameters and thyroid hormones of crossbred calves. Thirty crossbred (Bos taurus${\times}$Bos indicus) calves aged 3-5 months were divided into 3 equal groups of 10 each and fed graded levels of crude protein, namely 100 (NP), 75 (LP) and 125 (HP) percent of the Kearl recommendations for 105 d. The calves had access to ad libitum oat hay as the basal roughage. A metabolism trial of 6 d duration was conducted at 90 d of the study. Blood collection and its analysis for various hematological and biochemical parameters as well as thyroid hormones was done both during the pre- and post-experimental periods. The fortnightly body weight changes and the net gain did not differ significantly due to dietary variation. The average daily gain was $367{\pm}21.6$, $347{\pm}22.9$ and $337{\pm}26.4g$ in calves fed NP, LP and HP diets, respectively. Averaged across the feeding trial, oat hay intake was higher (p<0.05) in NP animals than HP or LP fed groups. The dry matter (DM) intake showed no significant difference between the 3 groups but the DM digestibility was higher (p<0.05) in the HP fed animals. The digestibility of crude protein, organic matter, crude fiber and nitrogen-free extract was significantly higher (p<0.05) on HP diets compared to LP or NP diets. The calves on all 3 diets were in positive nitrogen (N) balance, however the N retention was higher (p<0.05) in HP than in LP fed calves. The intake and retention of calcium and phosphorus were similar between the treatments. The blood biochemical profile revealed no significant influence of the dietary treatments on hemoglobin, packed cell volume as well as serum levels of glucose, total protein, albumin, globulin, Ca, P, and alkaline phosphatase. Serum levels of the circulating thyroid hormones ($T_3$ and $T_4$) tended to be lower (p>0.05) on feeding of the LP diet besides showing an increasing trend with the advancement of age. Considering the similar performance and metabolic profile, it could be concluded that crossbred calves can be satisfactorily reared on 25% lower protein level as recommended by Kearl for developing countries, which would not only economize the cost of production but also help to reduce environmental pollution attributable to livestock production.

Effect of Different Degradable Protein and Starch Sources on the Blood Metabolites and Rumen Biochemical Profile of Early Weaned Crossbred Calves

  • Pattanaik, A.K.;Sastry, V.R.B.;Katiyar, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.728-734
    • /
    • 1999
  • Thirty new born crossbred (Bos taurus${\times}$Bos indicus) calves, divided randomly in a $3{\times}2$ factorial design, were fed calf starters containing one of three protein sources i.e., groundnut cake (GN), cottonseed meal (CS) and meat and bone meal (MB) along with either raw (M) or gelatinized maize (MG) for 90d. Milk was fed upto 56d of age. Green oats and respective calf starters were offered from 14d of age onwards ad lib. Clinical profile of serum suggested significantly (p<0.05) higher albumin and lower alanine aminotransferase activity due to CS feeding. Alklaine phosphatase activity varied significantly (p<0.05) among dietary treatments showing interaction between protein and starch sources. Inclusion of gelatinized maize resulted in significantly higher concentration of serum globulin (p<0.05) and alkaline phosphatase activity (p<0.01). reduced (p<0.05) ruminal pH was accompanied by a significant decrease (p<0.01) in $NH_3-N$ concentration in the strained rumen liquor (SRL) of MG fed calves. Ruminal amylase activity was lower (p<0.05) on MG diets. Alanine aminotransferase activity in the rumen exhibited a significant (p<0.01) interaction between protein and starch sources. While feeding of CS significantly (p<0.01) reduced alanine aminotransferase activity, inclusion of thermally processed maize reduced (p<0.01) both aspartate and alanine aminotransferase activities in the rumen. The overall blood picture was similar among treatments, whereas rumen metabolites especially enzyme activities, seems to be altered with source of degradable protein an starch.