• Title/Summary/Keyword: Protein phosphorylation

Search Result 1,525, Processing Time 0.032 seconds

Anti-inflammatory and Anti-oxidative Effects of Rumex acetosa L. in RAW 264.7 (RAW 264.7 에서 MAPKs 경로를 통한 Rumex acetosa L.의 항염증, 항산화 효과)

  • Sung, Jin Young;Kim, Yong Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.3
    • /
    • pp.213-223
    • /
    • 2022
  • In this study, the anti-inflammatory and antioxidant effects of aerial parts of Rumex acetosa L. extract were confirmed to prevent various inflammatory diseases and skin aging caused by excessive oxidative stress. As a result of ABTS assay, it was confirmed that the radical scavenging ability increased in a concentration-dependent manner. ROS inhibitory ability was confirmed through DCF-DA assay, and concentration-dependent inhibition of ROS production was confirmed. The effect of inhibiting cell nuclear damage according to ROS was confirmed through DAPI staining. In addition, it was confirmed that the mRNA expression levels of iNOS and COX-2 were inhibited in a concentration-dependent manner through qPCR. As a result of confirming the protein levels of iNOS and COX-2 by western blotting, iNOS was significantly decreased at all concentrations, and COX-2 was significantly decreased at 800 ㎍/mL. The inhibitory effect on the production of NO generated by iNOS was confirmed by NO assay, and NO was decreased in a concentration-dependent manner. In addition, phosphorylation of ERK and JNK in the MAPKs signaling pathway were inhibited. Therefore, Rumex acetosa L. has the potential to be used as an anti-inflammatory and antioxidant cosmetic raw material by showing anti-inflammatory and antioxidant effects through the MAPKs pathway.

Effects of G-Rh2 on mast cell-mediated anaphylaxis via AKT-Nrf2/NF-κB and MAPK-Nrf2/NF-κB pathways

  • Xu, Chang;Li, Liangchang;Wang, Chongyang;Jiang, Jingzhi;Li, Li;Zhu, Lianhua;Jin, Shan;Jin, Zhehu;Lee, Jung Joon;Li, Guanhao;Yan, Guanghai
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.550-560
    • /
    • 2022
  • Background: The effect of ginsenoside Rh2 (G-Rh2) on mast cell-mediated anaphylaxis remains unclear. Herein, we investigated the effects of G-Rh2 on OVA-induced asthmatic mice and on mast cell-mediated anaphylaxis. Methods: Asthma model was established for evaluating airway changes and ear allergy. RPMCs and RBL-2H3 were used for in vitro experiments. Calcium uptake, histamine release and degranulation were detected. ELISA and Western blot measured cytokine and protein levels, respectively. Results: G-Rh2 inhibited OVA-induced airway remodeling, the production of TNF-α, IL-4, IL-8, IL-1β and the degranulation of mast cells of asthmatic mice. G-Rh2 inhibited the activation of Syk and Lyn in lung tissue of OVA-induced asthmatic mice. G-Rh2 inhibited serum IgE production in OVA induced asthmatic mice. Furthermore, G-Rh2 reduced the ear allergy in IgE-sensitized mice. G-Rh2 decreased the ear thickness. In vitro experiments G-Rh2 significantly reduced calcium uptake and inhibited histamine release and degranulation in RPMCs. In addition, G-Rh2 reduced the production of IL-1β, TNF-α, IL-8, and IL-4 in IgE-sensitized RBL-2H3 cells. Interestingly, G-Rh2 was involved in the FcεRI pathway activation of mast cells and the transduction of the Lyn/Syk signaling pathway. G-Rh2 inhibited PI3K activity in a dose-dependent manner. By blocking the antigen-induced phosphorylation of Lyn, Syk, LAT, PLCγ2, PI3K ERK1/2 and Raf-1 expression, G-Rh2 inhibited the NF-κB, AKT-Nrf2, and p38MAPK-Nrf2 pathways. However, G-Rh2 up-regulated Keap-1 expression. Meanwhile, G-Rh2 reduced the levels of p-AKT, p38MAPK and Nrf2 in RBL-2H3 sensitized IgE cells and inhibited NF-κB signaling pathway activation by activating the AKT-Nrf2 and p38MAPK-Nrf2 pathways. Conclusion: G-Rh2 inhibits mast cell-induced allergic inflammation, which might be mediated by the AKT-Nrf2/NF-kB and p38MAPK-Nrf2/NF-κB signaling pathways.

Production of PMA-induced MMP-2 and MMP-9 in the HT-1080 Fibrosarcoma Cell Line is Inhibited by Corydalis heterocarpa via the MAPK-related Pathway (PMA로 자극된 HT-1080 세포에서 염주괴불주머니 추출물의 MAPK 경로를 통한 MMP-2, MMP-9 발현 억제 효과)

  • Yu, Ga Hyun;Karadeniz, Fatih;Oh, Jung Hwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.51-55
    • /
    • 2022
  • Matrix metalloproteinase (MMP) enzymes are responsible for the degradation and formation of the extracellular matrix (ECM), and overproduction of MMPs is observed in several diseases, such as cancer and asthma, that progress with metastatic characteristics. Natural products, especially phytochemicals, have been an important source of MMP inhibitors with reduced side effects. Although the majority of phytochemicals inhibit the enzymatic activity of MMPs, some suppress MMP production. In this context, the current study evaluated the potential of Corydalis heterocarpa, a halophyte with reported bioactivities, to inhibit MMP expression in PMA-stimulated HT-1080 cells. A crude C. heterocarpa extract was shown to decrease the mRNA and protein expression of MMP-2 and MMP-9 while increasing the endogenous MMP inhibitors TIMP-1 and TIMP-2 which regulate MMP expression in healthy tissues. In addition, our results show that the inhibitory effects of C. heterocarpa might occur through suppression of the phosphorylation of MAPK signaling, the upstream activator of MMP overexpression. In conclusion, C. heterocarpa is a potential source of antimetastatic compounds that might serve as lead molecules to develop novel MMP inhibitors.

The estrogen-related receptor γ modulator, GSK5182, inhibits osteoclast differentiation and accelerates osteoclast apoptosis

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.266-271
    • /
    • 2021
  • Estrogen-related receptor γ (ERRγ), a member of the orphan nuclear receptor family, is a key mediator in cellular metabolic processes and energy homeostasis. Therefore, ERRγ has become an attractive target for treating diverse metabolic disorders. We recently reported that ERRγ acts as a negative regulator of osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In the present study, we explored the effects of an ERRγ-specific modulator, GSK5182, on ERRγ-regulated osteoclast differentiation and survival. Interestingly, GSK5182 increased ERRγ protein levels much as does GSK4716, which is an ERRγ agonist. GSK5182 inhibited osteoclast generation from bone-marrow-derived macrophages without affecting cytotoxicity. GSK5182 also attenuated RANKL-mediated expression of cFos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), pivotal transcription factors for osteoclastogenesis. Arrested osteoclast differentiation was associated with reduced RANK expression, but not with the M-CSF receptor, c-Fms. GSK5182 strongly blocked the phosphorylation of IκBα, c-Jun N-terminal kinase, and extracellular signal-regulated kinase in response to RANKL. GSK5182 also suppressed NF-κB promoter activity in a dose-dependent manner. In addition to osteoclastogenesis, GSK5182 accelerated osteoclast apoptosis by caspase-3 activation. Together, these results suggest that GSK5182, a synthetic ERRγ modulator, may have potential in treating disorders related to bone resorption.

Immunostimulatory activity of hydrolyzed and fermented Platycodon grandiflorum extract occurs via the MAPK and NF-κB signaling pathway in RAW 264.7 cells

  • Jae In, Jung;Hyun Sook, Lee;So Mi, Kim;Soyeon, Kim;Jihoon, Lim;Moonjea, Woo;Eun Ji, Kim
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.685-699
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Platycodon grandiflorum (PG) has long been known as a medicinal herb effective in various diseases, including bronchitis and asthma, but is still more widely used for food. Fermentation methods are being applied to increase the pharmacological composition of PG extracts and commercialize them with high added value. This study examines the hydrolyzed and fermented PG extract (HFPGE) fermented with Lactobacillus casei in RAW 264.7 cells, and investigates the effect of amplifying the immune and the probable molecular mechanism. MATERIALS/METHODS: HFPGE's total phenolic, flavonoid, saponin, and platycodin D contents were analyzed by colorimetric analysis or high-performance liquid chromatography. Cell viability was measured by the MTT assay. Phagocytic activity was analyzed by a phagocytosis assay kit, nitric oxide (NO) production by a Griess reagent system, and cytokines by enzyme-linked immunosorbent assay kits. The mRNA expressions of inducible nitric oxide synthase (iNOS) and cytokines were analyzed by reverse transcription-polymerase chain reaction, whereas MAPK and nuclear factor (NF)-κB activation were analyzed by Western blots. RESULTS: Compared to PGE, HFPGE was determined to contain 13.76 times and 6.69 times higher contents of crude saponin and platycodin D, respectively. HFPGE promoted cell proliferation and phagocytosis in RAW 264.7 cells and regulated the NO production and iNOS expression. Treatment with HFPGE also resulted in increased production of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, C-X-C motif chemokine ligand10, granulocyte-colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1, and the mRNA expressions of these cytokines. HFPGE also resulted in significantly increasing the phosphorylation of NF-κB p65, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. CONCLUSIONS: Taken together, our results imply that fermentation and hydrolysis result in the extraction of more active ingredients of PG. Furthermore, we determined that HFPGE exerts immunostimulatory activity via the MAPK and NF-κB signaling pathways.

Protective Effects of Chrysanthemi Indici Flos Extract and Flaxseed Oil Mixture on HCl/ethanol-induced Acute Gastric Lesion Mice (급성 위염 동물 모델에서 감국(甘菊) 추출물과 아마인유(亞麻仁油) 혼합물의 위 점막 보호 효과)

  • Lee, Jin A;Kim, Soo Hyun;Kim, Min Ju;Ahn, Jeong-Hyun;Park, Hae-Jin;Lee, Woo Rak;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.33 no.6
    • /
    • pp.19-28
    • /
    • 2018
  • Objectives : The objective of this study was to investigate the protective effect of Flaxseed oil and Chrysanthemi Indici Flos 50% ethanol extract in an HCl/ethanol induced acute gastritis model. Methods : ICR mice were divided into 6 groups; normal mice (Nor), gastritic mice with distilled water (Veh), gastritic mice with 10 mg/kg sucralfate (SC), gastritic mice with 16 g/㎏ Flaxseed oil (FO), gastritic mice with FO + 50 mg/kg Chrysanthemi Indici Flos (FCL), and gastritic mice with FO + 100 mg/kg Chrysanthemi Indici Flos (FCH). Then, mice were orally administered with 150 mM HCl/60% ethanol and caused acute gastritis. After 1 hr, mice were sacrificed, and blood and stomach tissue were collected. Results : Administration of FCL and FCH to mice prior to the induction of gastritis was found to reduce gastric injury. reactive oxygen species (ROS) and peroxy nitrite ($ONOO^-$) levels of stomach tissues were significantly decreased in FO, FCL, and FCH compared to Veh group. As results of stomach protein analyses, FCL and FCH effectively reduce inflammatory-related factors such as inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and interleukin 1 beta ($IL-1{\beta}$) in gastric lesion mice. In addition, nuclear factor kappa B p65 ($NF-{\kappa}B$ p65) and phosphorylation inhibitor of nuclear factor kappa $B{\alpha}(p-I{\kappa}B{\alpha})$ were down-regulated in FCL and FCH administrated gastric lesion mice. Conclusions : These results suggest that FCL and FCH has an inhibitory effect against gastric injury. Therefore, FCL and FCH has the potential to be used as a natural therapeutic drug.

PRR16/Largen Induces Epithelial-Mesenchymal Transition through the Interaction with ABI2 Leading to the Activation of ABL1 Kinase

  • Kang, Gyeoung Jin;Park, Jung Ho;Kim, Hyun Ji;Kim, Eun Ji;Kim, Boram;Byun, Hyun Jung;Yu, Lu;Nguyen, Tuan Minh;Nguyen, Thi Ha;Kim, Kyung Sung;Huy, Hieu Phung;Rahman, Mostafizur;Kim, Ye Hyeon;Jang, Ji Yun;Park, Mi Kyung;Lee, Ho;Choi, Chang Ick;Lee, Kyeong;Han, Hyo Kyung;Cho, Jungsook;Rho, Seung Bae;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.340-347
    • /
    • 2022
  • Advanced or metastatic breast cancer affects multiple organs and is a leading cause of cancer-related death. Cancer metastasis is associated with epithelial-mesenchymal metastasis (EMT). However, the specific signals that induce and regulate EMT in carcinoma cells remain unclear. PRR16/Largen is a cell size regulator that is independent of mTOR and Hippo signalling pathways. However, little is known about the role PRR16 plays in the EMT process. We found that the expression of PRR16 was increased in mesenchymal breast cancer cell lines. PRR16 overexpression induced EMT in MCF7 breast cancer cells and enhances migration and invasion. To determine how PRR16 induces EMT, the binding proteins for PRR16 were screened, revealing that PRR16 binds to Abl interactor 2 (ABI2). We then investigated whether ABI2 is involved in EMT. Gene silencing of ABI2 induces EMT, leading to enhanced migration and invasion. ABI2 is a gene that codes for a protein that interacts with ABL proto-oncogene 1 (ABL1) kinase. Therefore, we investigated whether the change in ABI2 expression affected the activation of ABL1 kinase. The knockdown of ABI2 and PRR16 overexpression increased the phosphorylation of Y412 in ABL1 kinase. Our results suggest that PRR16 may be involved in EMT by binding to ABI2 and interfering with its inhibition of ABL1 kinase. This indicates that ABL1 kinase inhibitors may be potential therapeutic agents for the treatment of PRR16-related breast cancer.

MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells

  • Yong Jung Kang;Young Hoon Kwon;Jung Yoon Jang;Jun Ho Lee;Sanggwon Lee;Yujin Park;Hyung Ryong Moon;Hae Young Chung;Nam Deuk Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.

The Anti-Bacterial Activity and Anti-Inflammatory Effect of Ethanol Complex Extracts of Safflower and Mother Wort (사플라워와 마더워트 등 에탄올복합추출물의 항균활성과 항염증 효과)

  • Hyun Kyoung Kim;Yungi Lee;Subin Choi;DO Wan Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.717-724
    • /
    • 2023
  • we are investigated the anti-inflammatory effects of Safflower and Mother wort Ethanol Complex Extracts(SEC) on lipopolysaccharide (LPS)-activated RAW 264.7 cells. The results demonstrated that pretreatment of SEC(500㎍/mL) significantly reduced NO production by suppressing iNOS protein expression in LPS-stimulated cells. Anti-inflammatory effects by Safflower and Mother wort Ethanol Complex Extracts were observed in the following. Safflower and Mother wort Ethanol Complex Extracts inhibited the translocation of NF-κB from the cytosol to the nucleus via the suppression of IκB-α phosphorylation and also inhibited LPS-stimulated NF-κB transcriptional activity. These findings suggest that Safflower and Mother wort Ethanol Complex Extracts exert anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of Safflower and Mother wort Ethanol Complex Extracts. Therefore, Safflower and Mother wort Ethanol Complex Extracts could be regarded as a potential source of natural anti-inflammatory agents.

Effects of Pomace of Schizandra chinensis, Schizandrin, and Gomisin A on LPS-induced Inflammatory Responses in RAW264.7 Cells (오미자 박, schizandrin 및 gomisin A에 의한 RAW264.7 세포주에서 lipopolysaccharide로 유도된 염증 반응의 억제)

  • Seo, Yu-Mi;Kim, Hyun-Ji;Lee, Eun-Joo;Chung, Chungwook;Sung, Hwa-Jung;Sohn, Ho-Yong;Park, Jong-Yi;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.339-344
    • /
    • 2018
  • Schizandra chinensis has been used as a traditional Chinese medicine and is known to have various bioactive components, including schizandrin and gomisin A. In the current study, we investigated the anti-inflammatory activities and their working mechanisms of ethanol extracts of pomace of Schizandra chinensis (PSC), schizandrin (SZ), and gomisin A (GA). First, we analyzed the effects of PSC on nitric oxide (NO) production and cell viabilities in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results indicated that PSC dramatically reduced NO production in LPS-activated RAW264.7 cells in a dose-dependent manner without affecting cell viabilities. PSC also decreased the expression of pro-inflammatory genes iNOS and COX-2, whereas the expression of TNF-${\alpha}$ was not affected by PSC. In addition, PSC inhibited phosphorylation of p38, ERK1/2, and JNK but did not change the expression of their total protein. The results indicate that PSC can regulate LPS-induced inflammatory responses by suppressing MAPK (mitogen-activated protein kinase) signaling. We also analyzed the effects of SZ and GA on NO production and cell viabilities in RAW264.7 cells. The results showed that SZ and GA also decreased NO production in a dose-dependent manner in LPS-activated RAW 264.7 cells without affecting cell viabilities. SZ reduced the expression of iNOS, whereas GA downregulated iNOS and COX-2. Overall, these findings clarify the molecular mechanisms of the anti-inflammatory effects mediated by PSC, SZ, and GA.