• 제목/요약/키워드: Protein kinases

검색결과 731건 처리시간 0.03초

사람의 신경교종 세포주에서 아데노바이러스 벡터를 이용한 p16/INK4a 유전자 전달에 의한 종양성장 억제 (Growth Suppression by Adenovirus-mediated Gene Transfer of p16/INK4a in Glioma Cell Lines)

  • 김미숙;권희충;강희석;박인철;이창훈;김창민;이춘택;홍석일;이승훈
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권4호
    • /
    • pp.471-476
    • /
    • 2000
  • Objective : p16/INK4a, a kind of tumor suppressor genes, encodes a specific inhibitor of the cyclin D-dependent kinases CDK4 and CDK6. This prevents the association of CDK4 with cyclin D1, and subsequently inhibits phosphorylation of retinoblastoma tumor suppressor protein(pRb), thus preventing exit from the G1 phase. According to previous reports, over 50% of glioma tissue and 80% of glioma cell lines have been demonstrated inactivation of p16/INK4a gene. The purpose of this study was to determine whether recombinant adenovirus-p16 virus is a suitable candidate for gene replacement therapy in cases of glioma. Methods : Three human glioma cell lines(U251MG, U87MG and U373MG) that express mutant p16 protein were used. Replication-deficient adenovirus was utilized as an expression vector to transfer exogenous p16 cDNA into the cells ; control cells were infected with the Ad-${\beta}$-gal expressing ${\beta}$-galactosidase. To monitor gene transfer and the expression of exogenous genes, we used Western Blotting analysis. Flow cytometry studies of cellular DNA content were performed to determine the cell cycle phenotype of the glioma cells before and after treatment. Results : We showed here that restoration of p16/INK4a expression in p16 negative U87MG, U251MG and partially deleted U373MG by Ad-CMV-p16 induced growth suppression in vitro. Flow cytometric study revealed that Ad-CMV-p16 infected U87MG cells were arrested during the G0-G1 phase of the cell cycle. Expression of p16 transferred by Ad-CMV-p16 in glioma cells was highly efficient and maintained for more than seven days. Conclusions : Our results suggest that Ad-CMV-p16 gene therapy strategy is potentially useful and warrants further clinical investigation for the treatment of gliomas.

  • PDF

RAW 264.7 대식세포에서 MAPKs 신호 전달 경로의 활성화를 통한 침향의 면역 자극 활성 (Immunostimulatory Activity of Agarwood through Activation of MAPK Signaling Pathway in RAW 264.7 Murine Macrophages)

  • 지선영;황보현;이혜숙;구영태;김진수;이기원;노동진;최영현
    • 생명과학회지
    • /
    • 제31권8호
    • /
    • pp.745-754
    • /
    • 2021
  • 면역 기능의 저하는 각종 감염에 대한 저항력의 부족을 초래하여 다양한 질병 유발에 기여하며, 면역 억제제의 부작용을 감소시키거나 면역력을 높이기 위해 면역 조절 생체 물질이 사용되고 있다. 침향은 침향나무의 방향족수지 부분이며 전통적으로 다양한 질병을 치료하기 위한 목적으로 사용되어왔다. 비록 선행 연구들에 의하여 침향이 신체의 면역력을 향상시킬 수 있다는 사실이 밝혀졌지만 이에 대한 근거는 여전히 부족한 실정이다. 본 연구에서는 인도네시아에서 구입한 A. malaccensisd 침향 메탄올 추출물의 면역 자극 효과를 RAW 264.7 대식세포 모델에서 평가하였다. 본 연구의 결과에 의하면 침향 추출물은 세포 독성이 없는 조건에서 식작용을 현저하게 향상시켰으며다. 또한 침향 추출물 처리된 RAW 264.7 세포는 활성화된 대식세포의 전형적인 형태를 보였으며, iNOS 발현 증가에 따른 NO 생성의 생성을 크게 증가시켰다. 아울러 TNF-α, IL-1β 및 IL-6과 같은 cytokine의 발현과 분비를 증가시켰으며, MAPKs 신호 전달 경로를 활성화시켰다. 따라서 본 연구의 결과는 고대 서적을 기반으로 침향의 효과를 확인하는 데 중요한 의미가 있으며, 침향이 잠재적인 면역 강화 효과가 있다는 근거를 제시하는 것이다.

LPS로 인해 활성화된 BV2 Microglia에서 발효 복합버섯-곡물 숙성균주 배양 홍삼(紅蔘)의 뇌신경염증 보호효과 (Anti-neuroinflammatory effects of cultivated red ginseng with fermented complex mushroom-cereal mycelium on lipopolysaccharide activated BV2 microglial cells)

  • 권빛나;오진영;김동욱;장미경;조준형;박성주;배기상
    • 대한본초학회지
    • /
    • 제38권1호
    • /
    • pp.11-19
    • /
    • 2023
  • Objectives : Neuroinflammation is a common pathological mechanism of neurodegenerative diseases, and the development of therapeutic agents is urgently needed. Red ginseng has been known to be good for the immune stimulation in Eastern Asia. Although the immuno-stimulatory activity of red ginseng are already known, the neuro-protective effects of cultivated red ginseng with fermented complex mushroom-cereal mycelium (RGFM) have not been conducted. Thus, in this study, we tried to investigate the anti-neuroinflammatory effect of RGFM water extract on lipopolysaccharide (LPS) stimulated BV2 cells. Methods : BV2 cells were pretreated with RGFM 1 h prior to LPS exposure. To determine the neuro-protective effects of RGFM water extract, we measured the expression of inflammatory mediators including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and nitric oxide (NO) and pro-inflammatory cytokines such as interleukin (IL)-1𝛽, IL-6 and tumor necrosis factor (TNF)-𝛼 in LPS-stimulated BV2 cells. In addition, to find out the regulatory mechanism of RGFM water extract, we assessed the protein levels of mitogen-activated protein kinases (MAPKs) and inhibitory 𝜅B𝛼 (I𝜅B𝛼) by western blotting. Results : In our study, treatment of RGFM reduced the mRNA expression of iNOS and COX-2 and suppressed NO production in LPS-stimulated BV2 cells. Additionally, the secretion of IL-1𝛽 and TNF-𝛼 but not IL-6 was significantly inhibited by RGFM. Furthermore, RGFM water extract inhibited the phosphorylation of c-Jun N-terminal kinase (JNK). Conclusions : Taken together, these findings suggest that RGFM water extract has a protective effect on neuroinflammation through inhibition of JNK.

LPS로 자극한 RAW 264.7 세포에서 염증성세포활성물질 생산에 미치는 도적산(導赤散) 물 추출의 억제 효과 (Inhibitory Effect of Water Extract from Dojuksan on LPS-induced Proinflammatory Cytokines Production in RAW 264.7 Cells)

  • 김지은;김성배;강옥화;신인식;강석훈;이승호;권동렬
    • 대한본초학회지
    • /
    • 제28권3호
    • /
    • pp.53-60
    • /
    • 2013
  • Objectives : DojukSan is known to be effective for treating a urinary diseases and stomatitis. However, there has been a lack of studies regarding the effects of Dojuksan on the inflammatory activities and effector inflammatory disease mechanism about macrophage before is not known. To elucidate the molecular mechanisms of Dojuksan water extract (DJS) on pharmacological and biochemical actions in inflammation, we examined the effect of DJS on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophages. Methods : In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay, reverse transcription polymerase chain reaction, and western blot analysis to measure the activation of MAPKs. Cells were treated with 200 ng/mL of LPS 1 h prior to the addition of DJS. Cell viability was measured by MTS assay. The investigation focused on whether DJS inhibited nitric oxide (NO) and prostaglandin E2 ($PGE_2$) productions, as well as the expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells. Results : We found that DJS inhibited LPS-induced NO, $PGE_2$ and IL-6 productions as well as the expressions of iNOS and COX-2. Furthermore, DJS suppressed the LPS-induced phosphorylation of p38 MAPK and c-Jun NH2-protein kinase (JNK). Conclusions : These results suggest that DJS has inhibitory effects on LPS-induced $PGE_2$, NO, and IL-6 production, as well as the expressions of iNOS and COX-2 in the murine macrophage. These inhibitory effects occur through blockades on the MAPKs phosphorylation.

황금작약탕(黃芩芍藥湯)의 RAW 264.7 대식 세포에서의 항염증 효과에 관한 연구 (The Study of Anti-inflammatory Effect of Hwanggeumjakyak-tang Extract in RAW 264.7 Macrophage)

  • 김마룡;강옥화;김성배;강희정;김지은;황형칠;김인원;권동렬
    • 대한본초학회지
    • /
    • 제28권1호
    • /
    • pp.43-50
    • /
    • 2013
  • Objectives : Hwanggeumjakyak-tang (huangqin shaoyao tang, HJT) has been used to treat acute enteritis in traditional oriental medicine. However, there has been a lack of studies regarding the effects of HJT on the inflammatory activities and effector inflammatory disease mechanism about macrophage before is not known. So we examined the effect of HJT water extract on pro-inflammatory mediators in lipopolysaccharide (LPS) - stimulated mouse macrophage, RAW 264.7 cells. Methods : Cells were treated with 2 ug/mL of LPS 1 h prior to the addition of HJT. Cell viability was measured by MTS assay. The production of nitric oxide (NO) was determined by reacting cultured medium with Griess reagent. The expression of cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS) and mitogen-activated protein kinases (MAPKs) was investigated by Western blot, RT-PCR. The content of level of cytokines (prostaglandin (PG) $E_2$, interleukin (IL)-6, IL-12, Tumor necrosis factor-alpha (TNF-${\alpha}$) and monocyte chemoattractant protein-1 (MCP-1)) in media from LPS-stimulated Raw 264.7 cells was analyed by ELISA kit. Results : HJT inhibited the production of NO, $PGE_2$, IL-6 as well as the expressions of iNOS, COX-2 but did not inhibit the production of IL-12, TNF-${\alpha}$, MCP-1 in the murine macrophage, RAW 264.7 cells. HJT also had suppression effects of LPS-induced MAPKs activation Conclusion : These results suggest that HJT has an anti-inflammatory therapeutic potential, which may result from inhibition of MAPK phosphorylation, thereby decreasing the expression of pro-inflammatory genes.

3T3-L1 전구지방세포에서 개구리자리(Ranunculus sceleratus) 추출물의 AMPK 신호전달을 통한 지방생성 억제 효과 (Extract of Ranunculus sceleratus Reduced Adipogenesis by Inhibiting AMPK Pathway in 3T3-L1 Preadipocytes)

  • 김예지;조성필;이희주;홍금란;김경현;류시윤;정주영
    • 한방비만학회지
    • /
    • 제22권1호
    • /
    • pp.30-37
    • /
    • 2022
  • Objectives: Adipogenesis is the process by which pre-adipocytes are differentiated into adipocytes. It also plays an important role in adipocyte formation and lipid accumulation. Ranunculus sceleratus (R. sceleratus) extracts are used for the treatment of various diseases such as hepatitis, jaundice, and tuberous lymphadenitis in oriental medicine. However, its effect on adipogenesis has not yet been studied. In this study, we investigated the effects of R. sceleratus on adipogenesis in 3T3-L1 cells. Methods: Cells were treated with 50, 100, and 200 ㎍/ml of R. sceleratus and cell viability was evaluated. To differentiate the 3T3-L1 preadipocytes, a 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI) solution were used. The accumulation of lipid droplets was determined by Oil Red O staining. The expression levels of adipogenesis-related proteins were also determined. Results: MDI solution differentiated the preadipocytes into adipocytes and accumulation of lipids was observed in the differentiated 3T3-L1 cells. Interestingly, the amount of lipid droplets was reduced after R. sceleratus treatment. In addition, the expression levels of key adipogenic transcription factors, such as CCAAT/enhancer-binding proteins-𝛼 (C/EBP-𝛼) and peroxisome proliferator-activated receptors-𝛾 (PPAR-𝛾) were also reduced after R. sceleratus treatment. Furthermore, R. sceleratus increased AMP-activated kinase (AMPK) phosphorylation and decreased sterol regulatory element-binding protein-1 expression. Conclusions: Our results showed that R. sceleratus reduced preadipocyte differentiation by inhibiting C/EBP-𝛼 and PPAR-𝛾 levels via the AMPK pathway. Therefore, we suggest that R. sceleratus may be potentially used as an anti-adipogenic agent.

RAW264.7 세포에서 Cymbopogon Citratus 에탄올 추출물의 HO-1 유도를 통한 항산화 효과 (Anti-Oxidative Effects of Cymbopoton Citratus Ethanol Extract through the Induction of HO-1 Expression in RAW 264.7 Cells)

  • 박충무;윤현서
    • 대한통합의학회지
    • /
    • 제11권4호
    • /
    • pp.73-82
    • /
    • 2023
  • Purpose : Cymbopogon citratus, also known as lemongrass, has widely spread around the world and its essential oil is usually applied in food, perfume, and other industrial purposes. In addition, C. citratus has also been used for the treatment of inflammation, digestive disorders, and diabetes in traditional medicine. In this study, the antioxidative activity of C. citratus ethanol extract (CCEE) was analyzed in RAW 264.7 cells through the induction of one of phase II enzymes, heme oxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor (Nrf)2, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt. Methods : The antioxidative activity of CCEE against oxidative stress and its underlying molecular mechanisms were analyzed by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results : The results exhibited that CCEE potently attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS levels in a dose-dependent manner without any cytotoxicity. CCEE treatment significantly induced the expression of HO-1 which is known for its antioxidative capacity. In addition, CCEE treatment significantly upregulated the expression of Nrf2, a corresponding transcription factor for the regulation of antioxidative enzymes, which was in accordance with the HO-1 overexpression. MAPK and PI3K/Akt were also evaluated for their important roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, the potent HO-1 expression was mediated by not extracellular regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), p38, but phosphoinositide 3-kinase (PI3K) phosphorylation. To confirm the antioxidative activity of CCEE-induced HO-1 expression, oxidative damage was initiated by t-BHP and attenuated by CCEE treatment, which was identified by HO-1 selective inhibitor and inducer. Conclusion : Consequently, CCEE potently induced the HO-1-mediated antioxidative potential through the modulation of Nrf2 and PI3K/Akt signaling pathways in RAW 264.7 cells. These results suggest that CCEE could be a promising strategy for the mitigation against cellular oxidative damage.

RAW 264.7 세포에서 Lycopene의 MAPK/Nrf2/HO-1 신호 전달 체계를 통한 항산화 효과 (Anti-oxidative Activity of Lycopene Via the Induction of HO-1 Expression by MAPK/Nrf2 Signaling Pathway in RAW 264.7 Cells)

  • 박충무;안현;윤현서
    • 대한통합의학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: Lycopene is abundantly contained in Tomatoes and is known for diverse biological activities such as antioxidant, anti-inflammatory, and anticancer effects. In this study, the antioxidative potential of lycopene was investigated through the induction of hemeoxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor2 (Nrf2) and upstream signaling molecules, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Aktin RAW 264.7 cells. Methods: The antioxidative potential of lycopene against oxidative stress and its molecular mechanisms were determined by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results: Lycopene treatment significantly attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS formation in a dose-dependent manner without any cytotoxicity. In addition, 50 µM of lycopene for 6 h treatment induced potent HO-1 expression and its transcription factor, Nrf2. MAPK and PI3K/Aktwere also analyzed due to their critical roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, phosphorylation of extracellular regulated kinase (ERK) was significantly induced by lycopene treatment while the activated status of c-Jun NH2-terminal kinase (JNK), p38, and Akt, were not given any effect. To confirm the antioxidative mechanism of HO-1 mediated by ERK activation, each selective inhibitor was employed in a protection assay, in which oxidative damage occurred by t-BHP. Lycopene, SnPP, and CoPP treatments reflected accelerated HO-1 expression could be a protective role against oxidative damage-initiated cell death. A selective inhibitor for ERK significantly inhibited the lycopene-induced cytoprotective effect but selective inhibitors for other signaling molecules did not attenuate the rate of t-BHP-induced cell death. Conclusion: In conclusion, lycopene potently scavenged intracellular ROS formation and enhanced the HO-1 mediated antioxidative potential through the modulation of Nrf2, MAPK signaling pathway in RAW 264.7 cells.

AMPK 활성화를 통한 소형화(素馨花) (Jasminum officinale L. var. grandiflorum) 열수 추출물의 HepG2 간세포 보호 활성 (Hepato-Protective Activities of Jasminum officinale L. var. grandiflorum Aqueous Extract via Activation of AMPK in HepG2 Cells)

  • 박상미;정대화;민병구;제갈경환;변성희;김재광;김상찬
    • 대한한의학방제학회지
    • /
    • 제31권4호
    • /
    • pp.231-243
    • /
    • 2023
  • Objectives : Jasminum officinale L. var. grandiflorum is used as a traditional or folk remedy in China to treat arthritis, hepatitis, duodenitis, conjunctivitis, gastritis, and diarrhea. In this study, we aimed to study the hepatocyte protective activity and molecular mechanism of Jasminum officinale L. var. grandiflorum aqueous extract (JGW) using HepG2 hepatocyte cell lines. Methods : HepG2 cells were pretreated with diverse concentrations of JGW, and then the cells were exposed to tert-butyl hydroperoxide (tBHP) for inducing oxidative stress. Hydrogen peroxide (H2O2) production, glutathione (GSH) concentration, mitochondrial membrane potential (MMP) and cell viability were measured to investigate hepato-protective effects of JGW. Phosphorylation of AMP-activated protein kinases (AMPK), acetyl coenzyme A carboxylase (ACC) and effects of compound C on cell viability were examined to observe the role of AMPK on JGW-mediated cytoprotection. Results : Pretreatment with JGW (10-300 ㎍/mL) significantly suppressed cytotoxicity induced by tBHP in a concentration dependent manner and reduced the expression of cleaved PARP and cleaved caspase-3 proteins related to apoptosis in HepG2 cells. In addition, pretreatment with JGW significantly prevented the increase in H2O2 production, GSH depletion, and lower MMP induced by tBHP. Treatment with JGW (30 minutes of incubation and concentrations of 100 and 300 ㎍/mL) increased the phosphorylation of AMPK and ACC and treatment with compound C, a chemical inhibitor of AMPK, inhibited the cytoprotective effect of JGW. Conclusions : Our results demonstrated that JGW may protect hepatocytes from oxidative stress via activation of AMPK.

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao;Pattage Madushan Dilhara Jayatissa Fernando;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Young Ree Kim;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.84-93
    • /
    • 2024
  • Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.