Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.8.745

Immunostimulatory Activity of Agarwood through Activation of MAPK Signaling Pathway in RAW 264.7 Murine Macrophages  

Ji, Seon Yeong (Anti-Aging Research Center, Dong-eui University)
Hwangbo, Hyun (Anti-Aging Research Center, Dong-eui University)
Lee, Hyesook (Anti-Aging Research Center, Dong-eui University)
Koo, Young Tae (Natural Products Convergence R&D Division, Kwangdong Pharm Co. Ltd.)
Kim, Jin Soo (Natural Products Convergence R&D Division, Kwangdong Pharm Co. Ltd.)
Lee, Ki Won (Natural Products Convergence R&D Division, Kwangdong Pharm Co. Ltd.)
Noh, Dong Jin (Natural Products Convergence R&D Division, Kwangdong Pharm Co. Ltd.)
Choi, Yung Hyun (Anti-Aging Research Center, Dong-eui University)
Publication Information
Journal of Life Science / v.31, no.8, 2021 , pp. 745-754 More about this Journal
Abstract
Deterioration of the immune function weakens the body's resistance to various infections, leading to a series of diseases. Immunomodulatory biomaterials have been used to reduce the side effects of immunosuppressants or to enhance immunity. Agarwood is the aromatic resinous portion of Aquilaria trees that has been traditionally used as a medicinal herb for the treatment of various diseases. Although previous studies have shown that agarwood can improve the body's immunity, evidence for this claim is still lacking. In this study, the immune-enhancing effects of the agarwood methanol extracts of Aquilaria malaccensis Lamk were evaluated in a RAW 264.7 macrophage model. Based on the results, the agarwood extracts markedly enhanced phagocytosis in the absence of cytotoxicity. The agarwood extract-treated RAW 264.7 cells exhibited the typical morphology of activated macrophages, which are spindle-shaped with elongated filopodia. Agarwood extract also significantly increased the production of nitric oxide (NO), which is associated with the increased expression of inducible NO synthase. Moreover, the secretion and expression levels of cytokines, such as tumor necrosis factor-α and interleukin (IL)-1β and IL-6, were increased by agarwood treatment. Notably, these are also associated with a mitogen-activated protein kinase signaling pathway. Taken together, our findings provide scientific evidence that agarwood has potential immune-enhancing effects in vitro.
Keywords
Agarwood; cytokine; immune-enhancing activity; macrophages; mitogen-activated protein kinases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arabpour, M., Saghazadeh, A. and Rezaei, N. 2021. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int. Immunopharmacol. 97, 107823.   DOI
2 Guo, R., Li, J., Gu, Y., Li, Y., Li, S., Gao, X., Zhu, Z. and Tu, P. 2019. GYF-21, an epoxide 2-(2-phenethyl)-chromone derivative, suppresses dysfunction of B cells mainly via inhibiting BAFF activated signaling pathways. Int. Immunopharmacol. 67, 473-482.   DOI
3 Wang, N., Liang, H. and Zen, K. 2014. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front. Immunol. 5, 614.   DOI
4 Aderem, A. and Underhill, D. M. 1999. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593-623.   DOI
5 Apostolova, E., Lukova, P., Baldzhieva, A., Katsarov, P., Nikolova, M., Iliev, I., Peychev, L., Trica, B., Oancea, F., Delattre, C. and Kokova, V. 2020. Immunomodulatory and anti-inflammatory effects of fucoidan: A review. Polymers (Basel) 12, 2338.   DOI
6 Barton, G. M. and Ruslan, M. 2009. Toll-like receptor signaling pathways. Science 300, 1524-1525.   DOI
7 Bhore, S. J., Preveena, J. and Kandasamy, K. I. 2013. Isolation and identification of bacterial endophytes from pharmaceutical agarwood-producing Aquilaria species. Pharmacognosy Res. 5, 134-137.   DOI
8 Bogdan, C. 2015 Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 36, 161-178.   DOI
9 Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J. T. and Sahebkar, A. 2018. Macrophage plasticity, polarization, and function in health and disease. J. Cell Physiol. 233, 6425-6440.
10 Liu, C. P., Zhang, X., Tan, Q. L., Xu, W. X., Zhou, C. Y., Luo, M., Li, X., Huang, R. Y. and Zeng, X. 2017. NF-κB pathways are involved in M1 polarization of RAW 264.7 macrophage by polyporus polysaccharide in the tumor microenvironment. PLoS One 12, e0188317.   DOI
11 Chen, H. Q., Wei, J. H., Yang, J. S., Zhang, Z., Yang, Y., Gao, Z. H., Sui, C. and Gong, B. 2012. Chemical constituents of agarwood originating from the endemic genus Aquilaria plants. Chem. Biodivers 9, 236-250.   DOI
12 Moncada, S., Palmer, R. M. and Higgs, E. A. 1991. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142.
13 Mylvaganam, S., Freeman, S. A. and Grinstein, S. 2021. The cytoskeleton in phagocytosis and macropinocytosis. Curr. Biol. 31, R619-R632.
14 Nathan, C. 2012. Secretory products of macrophages: Twentyfive years on. J. Clin. Invest. 122, 1189-1190.   DOI
15 Parihar, A., Eubank, T. D. and Doseff, A. I. 2010. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J. Innate. Immun. 2, 204-215.   DOI
16 Tang, E. H., Libby, P., Vanhoutte, P. M. and Xu, A. 2012. Anti-inflammation therapy by activation of prostaglandin EP4 receptor in cardiovascular and other inflammatory diseases. J. Cardiovasc. Pharmacol. 59, 116-123.   DOI
17 Chaplin, D. D. 2010. Overview of the immune response. J. Allergy Clin. Immunol. 125, 3-23.   DOI
18 Chen, C. A., Liu, C. K., Hsu, M. L., Chi, C. W., Ko, C. C., Chen, J. S., Lai, C. T., Chang, H. H., Lee, T. Y., Lai, Y. L. and Chen, Y. J. 2017. Daphnoretin modulates differentiation and maturation of human dendritic cells through down-regulation of c-Jun N-terminal kinase. Int. Immunopharmacol. 51, 25-30.   DOI
19 Pranakhon, R., Pannangpetch, P. and Aromdee, C. 2011. Antihyperglycemic activity of agarwood leaf extracts in STZ-induced diabetic rats and glucose uptake enhancement activity in rat adipocytes. Songklanakarin J. Sci. Technol. 33, 405-410.
20 Rahman, M. M., Mosaddik, A. and Alam, A. K. 2021. Traditional foods with their constituent's antiviral and immune system modulating properties. Heliyon 7, e05957.   DOI
21 Tsai, Y. C., Wang, S. L., Wu, M. Y., Liao, C. H., Lin, C. H., Chen, J. J., Fu, S. L. and Pilloin, A. 2018. Flavonoid isolated from Aquilaria sinensis, exhibits anti-inflammatory activity in vitro and in vivo. Molecules 23, 3177.   DOI
22 Tu, Y., Yang, Y., Li, Y. and He, C. 2021. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol. Res. 169, 105615.   DOI
23 Nicholson, L. B. 2016. The immune system. Essays Biochem. 60, 275-301.   DOI
24 Jermsri, P. and Kumphune, S. 2012. Ethylacetate extract of Aquilaria crassna preserve actin cytoskeleton on stimulated ischemia induced cardiac cell death. J. Med. Plants Res. 21, 4057-4062.
25 Hu, Z., Ott, P. A. and Wu, C. J. 2018. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 18, 168-182.   DOI
26 Huang, J. Q., Wei, J. H., Zhang, Z., Yang, Y., Liu, Y. Y., Meng, H., Zhang, X. L. and Zhang, J. L. 2013. Historical records and modern studies on agarwood production method and overall agarwood production method. Zhongguo Zhong Yao Za Zhi 38, 302-306.
27 Jain, N., Moeller, J. and Vogel, V. 2019. Mechanobiology of macrophages: How physical factors coregulate macrophage plasticity and phagocytosis. Annu. Rev. Biomed. Eng. 21, 267-297.   DOI
28 Kakino, M., Sugiyama, T., Kunieda, H., Tazawa, S. and Maruyama, H. 2012. Agarwood (Aquilaria crassna) extracts decrease high-protein high-fat diet-induced intestinal putrefaction toxins in mice. Pharm. Anal. Acta. 26, 1-7.
29 Kalinski, P. 2012. Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21-28.   DOI
30 Vogel, D. Y., Heijnen, P. D., Breur, M., de Vries, H. E., Tool, A. T., Amor, S. and Dijkstra, C. D. 2014. Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation. J. Neuroinflammation 11, 23.   DOI
31 Wang, Y., Smith, W., Hao, D., He, B. and Kong, L. 2019. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int. Immunopharmacol. 70, 459-466.   DOI
32 Wynn, T. A., Chawla, A. and Pollard, J. W. 2013. Macrophage biology in development, homeostasis and disease. Nature 496, 445-455.   DOI
33 Yang, H. C., Park, H. C., Quan, H. and Kim, Y. 2018. Immunomodulation of biomaterials by controlling macrophage polarization. Adv. Exp. Med. Biol. 1064, 197-206.   DOI
34 Ye, W., He, X., Wu, H., Wang, L., Zhang, W., Fan, Y., Li, H., Liu, T. and Gao, X. 2018. Identification and characterization of a novel sesquiterpene synthase from Aquilaria sinensis: An important gene for agarwood formation. Int. J. Biol. Macromol. 108, 884-892.   DOI
35 Yunna, C., Mengru, H., Lei, W. and Weidong, C. 2020. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 877, 173090.   DOI
36 Mattila, J. T. and Thomas, A. C. 2014. Nitric oxide synthase: non-canonical expression patterns. Front. Immunol. 5, 478.   DOI
37 Kudrin, A. and Ray, D. 2008. Cunning factor: macrophage migration inhibitory factor as a redox-regulated target. Immunol. Cell Biol. 86, 232-238.   DOI
38 Locati, M., Curtale, G. and Mantovani, A. 2020. Diversity, mechanisms, and significance of macrophage plasticity. Annu. Rev. Pathol. 15, 123-147.   DOI
39 Marshall, J. S., Warrington, R., Watson, W. and Kim, H. L. 2018. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 14, 49.   DOI
40 Zheng, H., Gao, J., Man, S., Zhang, J., Jin, Z. and Gao, W. 2019. The protective effects of Aquilariae lignum Resinatum extract on 5-fuorouracil-induced intestinal mucositis in mice. Phytomedicine 54, 308-317.   DOI
41 Varin, A. and Gordon, S. 2009. Alternative activation of macrophages: immune function and cellular biology. Immunobiology 214, 630-641.   DOI
42 Fan, R., Zhu, C., Qiu, D., Mao, G. and Zeng, J. 2020. Activation of RAW264.7 macrophages by an acidic polysaccharide derived from Citrus grandis 'Tomentosa'. Int. J. Biol. Macromol. 156, 1323-1329.   DOI
43 Li, W., Chen, H. Q., Wang, H., Mei, W. L. and Dai, H. F. 2021. Natural products in agarwood and Aquilaria plants: chemistry, biological activities and biosynthesis. Nat. Prod. Rep. 38, 528-565.   DOI
44 Surjanto, S., Batubara, R. and Rangkuti, D. S. 2019. Safety test of agarwood leaves tea (Aquilaria malaccencis Lamk.) through skin sensitization test on albino rabbit. Open Access Maced. J. Med. Sci. 7, 3896-3899.   DOI
45 Guo, R., Zhao, Y. F., Li, J., Gu, Y. F., Huo, H. X., Li, S. S., Song, Y. L., Zhu, Z. X. and Tu, P. F. 2017. GYF-21, an epoxide 2-(2-phenethyl)-chromone derivative, suppresses innate and adaptive immunity via inhibiting STAT1/3 and NF-kappaB signaling pathways. Front. Pharmacol. 8, 281.   DOI
46 Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J. and Zhao, L. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9, 7204-7218.   DOI
47 Dahham, S. S., Hassan, L. E., Ahamed, M. B., Majid, A. S., Majid, A. M. and Zulkepli, N. N. 2016. In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassna). BMC Complement. Altern. Med. 16, 236.   DOI
48 Du, L., Li, J., Zhang, X., Wang, L., Zhang, W., Yang, M. and Hou, C. 2019. Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4/NF-κB pathway activation. Food Nutr. Res. 23, 63.
49 Hricik, D. E. 2015. Transplant immunology and immunosuppression: core curriculum 2015. Am. J. Kidney Dis. 65, 956-966.   DOI
50 Hashim, Y. Z., Kerr, P. G., Abbas, P. and Mohd Salleh, H. 2016. Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. J. Ethnopharmacol. 189. 331-360.   DOI