• Title/Summary/Keyword: Protein hydrolysis

Search Result 589, Processing Time 0.032 seconds

Electrophoretical Properties of Transglutaminase Treated Milk Product Powders (Transglutaminase를 처리한 분말 유제품의 전기영동적 특성)

  • Jeong, Ji-Eun;Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.304-308
    • /
    • 2006
  • This study was performed to understand the behavior of protein mobility and intensity of enzymatic hydrolysis according to crosslinking of sodium caseinate, whey protein isolate, skim milk and whole milk powders with or without transglutaminase (TGase, w/w = 200 : 1) at $38^{\circ}C$. Whey protein was limited to crosslinking and skim milk was relatively more increased in high molecular polymer than whole milk. The degree of crosslinking decreased in the order of sodium caseinate>skim milk>whole milk>whey protein isolate. The SDS-PAGE results indicated that main bands of TGase treated samples had a high mobility and formed bands of molecular weights below 15 kDa by hydrolysis with pepsin after 10 min of reaction time. However, ${\beta}-lactoglobulin$ showed remarkable stability against pepsin hydrolysis treated with and without TGase. The high molecular polymers were easily hydrolyzed with digestive enzymes in vitro experiment. These results suggested that novel dairy products using TGase would have no special digestive problem in human body.

Real Time Scale Measurement of Inorganic Phosphate Release by Fluorophore Labeled Phosphate Binding Protein (형광단이 붙어 있는 인산결합 단백질에 의한 인산 배출의 실시간 측정)

  • Jeong Yong-Joo
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.935-940
    • /
    • 2005
  • Fluorescence change of coumarin labeled phosphate binding protein (PBP-MDCC) was monitored to measure the amount of released inorganic phosphate ($P_{i}$) during nucleoside triphosphate (NTP) hydrolysis reaction. After purification of PBP-MDCC, fluorescence emission spectra showed that fluorescence responded linearly to $P_{i}$ up to about 0.7 molar ratio of $P_{i}$ to protein. The correlation of fluorescence signal and $P_{i}$ standard was measured to obtain [$P_{i}$] - fluorescence intensity standard curve on the stopped-flow instrument. When T7 bacteriophage helicase, double-stranded DNA unwinding enzyme using dTTP hydrolysis as an energy source, reacted with dTTP, the change of fluorescence was able to be converted to the amount of released $P_{i}$ by the $P_{i}$ standard curve. $P_{i}$ release results showed that single-stranded Ml3 DNA stimulated dTTP hydrolysis reaction several folds by T7 helicase. Instead of end point assay in NTP hydrolysis reaction, real time $P_{i}$-release assay by PBP-MDCC was proven to be very easy and convenient to measure released $P_{i}$.

Succinylated Pullulan Acetate Microspheres for Protein Delivery

  • Woo, Young-Rong;Seo, Seog-Jin;Na, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.323-329
    • /
    • 2011
  • In order to develop new protein carrier replacing poly(DL-lactic acid-co-glycolic acid) (PLGA) microspheres, succinylated pullulan acetate (SPA) was investigated to fabricate a long term protein delivery carrier. SPA microspheres loaded with lysozyme (Lys) as a model protein drug were prepared by a water/oil/water (W/O/W) double emulsion method. An acidity test of SPA copolymers after hydrolysis was performed to estimate the change of protein stability during releasing proteins from the microspheres. There was no pH change of SPA copolymers, but pH of PLGA polymers after hydrolysis was significantly decreased to around pH 2, indicating that the long-term stability of proteins released from SPA microspheres can be guaranteed. Loading efficiency of proteins into SPA microspheres was three times higher than those into conventional PLGA microspheres, indication of inducing stronger charge interaction between proteins and succinyl groups in SPA microspheres. Although initial burst behaviors were monitored in Lys-loaded SPA microspheres due to relatively strong hydrophilic succinyl segments in SPA microspheres, initial burst issues would be circumvented if the ratio of charge density of succinyl moieties and hydrophobic acetate groups is harmonically controlled. Therefore, in this study, a new attempt of protein delivery system was made and functional SPA was successfully confirmed as a new protein carrier.

Enzymatic Modification of Soy Proteins: Effects of Functional Properties of Soy Isolate upon Proteolytic Hydrolysis (대두단백질(大豆蛋白質)의 효소적(酵素的) 변형(變形) : 분리대두단백질(分離大豆蛋白質)의 기능성(機能性)에 미치는 단백질가수분해(蛋白質加水分解)의 영향(影響))

  • Kang, Yeung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.211-217
    • /
    • 1984
  • To study affinity of proteolytic enzymes to soy proteins, the physicochemical and functional properties of enzymatically modified protein products, kinetic parameters and degree of hydrolysis were measured using trypsin, alcalase (serine type protease) and pronase. Bacterial alcalase and pronase showed much greater affinity to soy protein than animal intestinal trypsin. This effect was very significant when unheated soy isolate was used as a substrate. Specific activities of these enzymes decreased with the increment of substrate concentration (over 2.0%, w/v) when heat denatured soy protein was used as a substrate. However, the decrease in specific activity was negligible at substrate concentrations lower than 2.0%. Polyacrylamide gel electrophoretic results showed that the pattern of 2S protein band changed distinctly in alcalase hydrolysis as compared with those of trypsin and pronase. Protein solubilities of alcalase and pronase hydrolyzates increased by 25-30%, at their pI (pH 5.0) over the control. Virtually no change was observed in solubility by trypsin hydrolysis. Heat coagulability and calcium-tolerance of the protein increased by enzymatic hydrolysis. No clear tendency, however, was observed for emulsion properties, foam expansion and the amount of free -SH groups. The enzyme treatment considerably decreased foam stability.

  • PDF

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process

  • Jeong, Yong-Ju;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.224-230
    • /
    • 2006
  • Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.

The Brown-Rot Basidiomycete Fomitopsis palustris Has the Endo-Glucanases Capable of Degrading Microcrystalline Cellulose

  • Yoon, Jeong-Jun;Cha, Chang-Jun;Kim, Yeong-Suk;Son, Dong-Won;Kim, Young-Kyoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.800-805
    • /
    • 2007
  • Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose(Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein(EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein(EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was $100{\mu}g/ml$. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.

Angiotensin Ⅰ Converting Enzyme(ACE) Inhibitory Activities of Laver(Porphyra tenera) Protein Hydrolysates (김 단백질 가수분해물의 Angiotensin Ⅰ 전환효소 저해 활성)

  • Kim Young-Myoung;Do Jeong-Ryong;In Jae-Pyung;Park Jong-Hyuk
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.1
    • /
    • pp.11-18
    • /
    • 2005
  • Angiotensin Ⅰ converting enzyme(ACE) inhibitory activities of laver(Porphyra tenera) protein hydrolysates were investigated by enzymes used for hydrolysis, molecular fractions and drying methods. For the enzymatic hydrolysis, crude laver protein, separated by filtration of water extract of dried laver extracted with 20 times(w/v) water for 3 hours at boiling temperature, were hydrolyzed with three commercial protease, Pepsin, alcalase and maxazyme NNP at optimal conditions. The yield of hydrolysis and ACE inhibitory activities of which were high in order of pepsin, alcalase and maxazyme NNP. ACE inhibitory activities of laver hydrolysates by molecular levels were high in order of 3 kDa > 10 kDa > 3∼10 kDa, and the IC/sub 50/ ACE inhibitory activities by molecular lebels were 4 mg/mL(3 kDa), 5 mg/mL(total hydrolysate), and 20 mg/mL(10 kDa), respectively. The storage stability of dried laver hydrolysates at 20℃ were strongly affected by drying methods, hot air dried of which were much stabler than freeze-dried one.

Effect of Enzymatic Hydrolysis of 7S Globulin, a Soybean Protein, on Its Allergenicity and Identification of its Allergenic Hydrolyzed Fragments Using SDS-PAGE

  • Keum, Eun-Hee;Lee, Sang-Il;Oh, Sang-Suk
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.128-132
    • /
    • 2006
  • This study was undertaken to investigate the effect of peptic and chymotryptic hydrolyses of 7S globulin, the major allergen of soybean protein, on its allergenicity, as measured by enzyme linked immunosorbent assay (ELISA), and to identify the allergenic hydrolyzed fragments of 7S globulin using SDS-PAGE. When 7S globulin was hydrolyzed by pepsin, the allergenicity was reduced by over 50%. However, the allergenicity of 7S globulin reduced by peptic hydrolysis was recovered in the sera from 5 out of 10 patients following sequential chymotryptic hydrolysis. Two fragments, with molecular weights 20-25 and 13-16 kDa, among the hydrolysate of 7S globulin by sequential pepsin and chymotrypsin showed reactivity with sera from 10 soybean-allergenic patients. As a result of the theoretical hydrolyses of ${\beta}$-conglycinin, which is a major protein of 7S globulin, it is suggested that the 20-25 kDa fragments were the fragments of the ${\alpha}$-subunit of ${\beta}$'-conglycinin and that the 10-16 kDa fragments were from the ${\alpha}$'-subunit.

Optimal Conditions for the Enzymatic Hydrolysis of Isolated Sesame Meal Protein (효소에 의한 참깨박 단백질의 최적 가수분해 조건)

  • Lee, S.H.;Cho, Y.J.;Kim, S.;Ahn, B.J.;Choi, C.
    • Applied Biological Chemistry
    • /
    • v.38 no.3
    • /
    • pp.248-253
    • /
    • 1995
  • Optimum conditions for the enzymatic hydrolysis of isolated sesame meal protein were investigated. Optimum conditions by papain were $60^{\circ}C$, pH 6.0, 3% enzyme concentration to substrate and 1.5% substrate concentration, respectively. The optimum operating conditions using pepsin were $55^{\circ}C$, pH 9.0, 3% enzyme concentration to substrate and 1% substrate concentration. The optimum operating conditions using trypsin were $60^{\circ}C$, pH 9.0, 1% enzyme concentration to substrate and 1% substrate concentration.

  • PDF

Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response

  • Yu Mi Baek;Soojin Yoon;Yeo Eun Hwang;Dong-Eun Kim
    • IMMUNE NETWORK
    • /
    • v.16 no.4
    • /
    • pp.249-255
    • /
    • 2016
  • Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) ligands over sticky-ended dsRNA. Moreover, the presence of the 5'-triphosphate (5'-ppp) moiety in dsRNA further enhanced binding affinity to RIG-I. Two structural motifs in RNA, blunt ends in dsRNA and 5'-ppp, stimulated the ATP hydrolysis activity of RIG-I. These structural motifs also strongly induced IFN expression as an innate immune response in cells. Therefore, we suggest that IFN induction through RIG-I activation is mainly determined by structural motifs in dsRNA that increase its affinity for RIG-I protein and stimulate ATPase activity in RIG-I.