• Title/Summary/Keyword: Protein detection

Search Result 889, Processing Time 0.031 seconds

Recent Research Trend of Biosensors for Colorectal Cancer Specific Protein Biomarkers (대장암 진단용 단백질 바이오마커 측정을 위한 바이오센서 개발의 최신 연구 동향)

  • Li, Jingjing;Si, Yunpei;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.253-259
    • /
    • 2021
  • Colorectal cancer (CRC) is one of the most prevalent diseases in modern society, constituting a serious threat to global health. Currently, routine clinical screening and early removal of precancerous polyps are the most successful methods for reducing CRC incidence and mortality. However, the high cost and invasive detection of sigmoidoscopy and colonoscopy limited the CRC-screening participation and prevention. The emergence of biosensors provides an inexpensive, sensitive, less invasive tool for detecting CRC disease biomarkers. This review highlights some of recent efforts made on developing biosensors with electrochemical and optical techniques targeting CRC specific protein biomarkers for early diagnosis and prognosis, potential applications, and future perspectives.

Characterization of Bacillus anthracis proteases through protein-protein interaction: an in silico study of anthrax pathogenicity

  • Banerjee, Amrita;Pal, Shilpee;Paul, Tanmay;Mondal, Keshab Chandra;Pati, Bikash Ranjan;Sen, Arnab;Mohapatra, Pradeep Kumar Das
    • CELLMED
    • /
    • v.4 no.1
    • /
    • pp.6.1-6.12
    • /
    • 2014
  • Anthrax is the deadly disease for human being caused by Bacillus anthracis. Instantaneous research work on the mode of infection of the organism revealed that different proteases are involved in different steps of pathogenesis. Present study reports the in silico characterization and the detection of pathogenic proteases involved in anthrax infection through protein-protein interaction. A total of 13 acid, 9 neutral, and 1 alkaline protease of Bacillus anthracis were selected for analysing the physicochemical parameter, the protein superfamily and family search, multiple sequence alignment, phylogenetic tree construction, protein-protein interactions and motif finding. Among the 13 acid proteases, 10 were found as extracellular enzymes that interact with immune inhibitor A (InhA) and help the organism to cross the blood brain barrier during the process of infection. Multiple sequence alignment of above acid proteases revealed the position 368, 489, and 498-contained 100% conserved amino acids which could be used to deactivate the protease. Among the groups analyzed, only acid protease were found to interact with InhA, which indicated that metalloproteases of acid protease group have the capability to develop pathogenesis during B. anthracis infection. Deactivation of conserved amino acid position of germination protease can stop the sporulation and germination of B anthracis cell. The detailed interaction study of neutral and alkaline proteases could also be helpful to design the interaction network for the better understanding of anthrax disease.

Glyphosate Toxicity: III. Detection of QB Protein in Thylakoid Membrane of Tomato Apical Meristem Using an Antibody Raised from Hybrid Protein of psb A and lac Z Gene (Glyphosate 독성: III. psb A와 lac Z 유전자의 Hybrid 단백질로부터 만들어진 항체를 이용한 토마토 정단분열조직의 Thylakoid막 내 QB 단백질의 검정)

  • Kim, Tae-Wan;Amrhein, Nikolaus
    • Korean Journal of Weed Science
    • /
    • v.15 no.3
    • /
    • pp.206-213
    • /
    • 1995
  • Glyphosate(N-[phosphonomethyl]glycine) applied to the assimilate-exporting leaves(i.e. third old leaf) of tomato(Lycopersicon esculentum Mil var. Moneymaker). Herbicide binding protein, QB protein(D1), has been immunoblotted using the antibodies raised against the hybrid-protein expressed by a part of spinach psb A gene cloned in frame with the 3'end of lac Z gene to allow expression of the ${\beta}$-galactosidase(EC 3.21.23) in Escherichia coli. Glyphosate has an effect on a turnover of D1 within photosystem II of thylakoid membrane. The dysfunction of D1 protein within light harvesting complex(LHC-II) seems to be a pleiotropic effect of glyphosate.

  • PDF

AITC induces MRP1 expression by protecting against CS/CSE-mediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis

  • Xu, Lingling;Wu, Jie;Li, Nini;Jiang, Chengjun;Guo, Yan;Cao, Peng;Wang, Dianlei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.481-492
    • /
    • 2020
  • The present study aimed to examine the effect of allyl isothiocyanate (AITC) on chronic obstructive pulmonary disease and to investigate whether upregulation of multidrug resistance-associated protein 1 (MRP1) associated with the activation of the PARK7 (DJ-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis. Lung function indexes and histopathological changes in mice were assessed by lung function detection and H&E staining. The expression levels of Nrf2, MRP1, heme oxygenase-1 (HO-1), and DJ-1 were determined by immunohistochemistry, Western blotting and reverse transcription-quantitative polymerase chain reaction. Next, the expression of DJ-1 in human bronchial epithelial (16HBE) cells was silenced by siRNA, and the effect of DJ-1 expression level on cigarette smoke extract (CSE)-stimulated protein degradation and AITC-induced protein expression was examined. The expression of DJ-1, Nrf2, HO-1, and MRP1 was significantly decreased in the wild type model group, while the expression of each protein was significantly increased after administration of AITC. Silencing the expression of DJ-1 in 16HBE cells accelerated CSE-induced protein degradation, and significantly attenuated the AITC-induced mRNA and protein expression of Nrf2 and MRP1. The present study describes a novel mechanism by which AITC induces MRP1 expression by protecting against CS/CSE-mediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis.

Microfluidic immunoassay using superparamagnetic nanoparticles in an enhanced magnetic field gradient (강화된 자기장 구배 하에서 나노자성입자를 이용한 미세유체 기반의 면역 측정)

  • Hahn, Young-Ki;Kang, Joo-H.;Kim, Kyu-Sung;Park, Je-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.158-163
    • /
    • 2006
  • This paper reports a novel immunoassay method using superparamagnetic nanoparticles and an enhanced magnetic field gradient for the detection of protein in a microfluidic device. We use superparamagnetic nanoparticles as a label and fluorescent polystyrene beads as a solid support. Based on this platform, magnetic force-based microfluidic immunoassay is successfully applied to analyze the concentration of IgG as model analytes. In addition, we present ferromagnetic microstructure connected with a permanent magnet to increase magnetic flux density gradient (dB/dx, ${\sim}10^{4}$ T/m), which makes limit of detection reduced. The detection limit is reduced to about 1 pg/mL.

Double-Enhancement Strategy: A Practical Approach to a Femto-Molar Level Detection of Prostate Specific $Antigen-{\alpha}_1-Antichymotrypsin$ (PSA/ACT Complex) for SPR Immunosensing

  • Cao, Cuong;Sim, Sang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1031-1035
    • /
    • 2007
  • Prostate specific $antigen-{\alpha}_1-antichymotrypsin$ was detected by a double-enhancement strategy involving the exploitation of both colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation. The AuNPs were synthesized and conjugated with horse-radish peroxidase-PSA polyclonal antibody by physisorption. Using the protein-colloid for SPR-based detection of the PSPJACT complex showed their enhancement as being consistent with other previous studies with regard to AuNPs enhancement, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the signal. The limit of detection was found at as low as 0.027 ng/ml of the PSA/ACT complex (or 300 fM), which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.