• Title/Summary/Keyword: Protein detection

Search Result 889, Processing Time 0.025 seconds

Manufacturing Protein-DNA Chip for Depigmenting Agent Screening (전사인자 저해제 통한 미백제 탐색용 단백질 칩 제작)

  • Han Jung-Sun;Kwak Eun-Young;Lee Hyang-Bok;Shin Jlung-Hyun;Baek Seung-Hak;Chung Bong-Hyun;Kim Eun-Ki
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.479-483
    • /
    • 2004
  • An attempt was made to develop a proteinchip for screening of MITF (microphthalmia transcription factor) inhibitor. Binding of MITF to E-box causes transcription of several pigmenting genes including tyrosinase gene. We investigated binding of MITF and its DNA binding site (E-box) using a protein-DNA chip with various detection methods including flurorescence (Cyt3). SPR (surface plasmon resonance) and SPRi (surface plasmon resonance imaging). A fusion protein (MITF-Maltose Binding Protein) was attached on the glass plate by chemical modification. An inhibitory synthetic DNA oligomer, artificially designed based on the E-box sequence, inhibited the binding of MITF and E-box. These results showed the potentials of flurorescence-based MITF protein chip as a microarray for high throughput screening (HTS) system of depigmenting agents.

Minor Coat Protein pIII Domain (N1N2) of Bacteriophage CTXф Confers a Novel Surface Plasmon Resonance Biosensor for Rapid Detection of Vibrio cholerae

  • Shin, Hae Ja;Hyeon, Seok Hywan;Cho, Jae Ho;Lim, Woon Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.510-518
    • /
    • 2021
  • Bacteriophages are considered excellent sensing elements for platforms detecting bacteria. However, their lytic cycle has restricted their efficacy. Here, we used the minor coat protein pIII domain (N1N2) of phage CTXφ to construct a novel surface plasmon resonance (SPR) biosensor that could detect Vibrio cholerae. N1N2 harboring the domains required for phage adsorption and entry was obtained from Escherichia coli using recombinant protein expression and purification. SDS-PAGE revealed an approximate size of 30 kDa for N1N2. Dot blot and transmission electron microscopy analyses revealed that the protein bound to the host V. cholerae but not to non-host E. coli K-12 cells. Next, we used amine-coupling to develop a novel recombinant N1N2 (rN1N2)-functionalized SPR biosensor by immobilizing rN1N2 proteins on gold substrates and using SPR to monitor the binding kinetics of the proteins with target bacteria. We observed rapid detection of V. cholerae in the range of approximately 103 to 109 CFU/ml but not of E. coli at any tested concentration, thereby confirming that the biosensor exhibited differential recognition and binding. The results indicate that the novel biosensor can rapidly monitor a target pathogenic microorganism in the environment and is very useful for monitoring food safety and facilitating early disease prevention.

Aptamer Based SPREETA Sensor for the Detection of Porphyromonas gingivalis G-Protein

  • Suk-Gyun Park;Hyun Ju Lee;Taeksoo Ji;Kyungbaek Kim;Seung-Ho Ohk
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.289-295
    • /
    • 2024
  • We have developed an aptamer that specifically binds to Porphyromonas gingivalis to reduce the cellular damage caused by P. gingivalis infection and applied it as a biosensor. P. gingivalis is one of the major pathogens causing destructive periodontal disease among the periodontal microorganisms constituting complex biofilms. Porphyromonas gingivalis G-protein (PGP) known to play an important role in the transmission of germs was used as a target protein for the screening of aptamer. The aptamer that has binds to the G-protein of P. gingivalis, was screened and developed through the Systemic Evolution of Ligands by Exponential Energy (SELEX) method. Modified-Western blot analysis was performed with the aptamer which consisted of 38 single-stranded DNA to confirm the selectivity. ELONA (enzyme linked oligonucleotide assay) used to confirm that the aptamer was sensitive to PGP even at low concentration of 1 ㎍/ml. For the rapid detection of P. gingivalis, we constructed a surface plasmon resonance biosensor with SPREETA using the PGP aptamer. It was confirmed that PGP could be detected as low concentration as at 0.1 pM, which is the minimum concentration of aptamer sensor within 5 min. Based on these results, we have constructed a SPREETA biosensor based on aptamer that can bind to P. gingivalis G-protein. It can be used as an infection diagnosis system to rapidly diagnose and analyze oral diseases caused by P. gingivalis.

Applications and Developmental Prospect of Protein Microarray Technology (Protein Microarray의 응용 및 발전 전망)

  • Oh, Young-Hee;Han, Min-Kyu;Kim, Hak-Sung
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.393-400
    • /
    • 2007
  • Analysis of protein interactions/functions in a microarray format has been of great potential in drug discovery, diagnostics, and cell biology, because it is amenable to large-scale and high-throughput biological assays in a rapid and economical way. In recent years, the protein microarray have broaden their utility towards the global analysis of protein interactions on a proteome scale, the functional activity analysis based on protein interactions and post-translational modifications (PTMs), and the discovery of biomarkers through profiling of protein expression between sample and reference pool. As a promising tool for proteomics, the protein microarray technology has advanced outstandingly over the past decade in terms of surface chemistry, acquisition of relevant proteins on a proteomic level, and detection methods. In this article, we briefly describe various techniques for development of protein microarray, and introduce developmental state of protein microarray and its applications.

Validation and Application of a Real-time PCR Protocol for the Specific Detection and Quantification of Clavibacter michiganensis subsp. sepedonicus in Potato

  • Cho, Min Seok;Park, Duck Hwan;Namgung, Min;Ahn, Tae-Young;Park, Dong Suk
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Clavibacter michiganensis subsp. sepedonicus (Cms) multiplies very rapidly, passing through the vascular strands and into the stems and petioles of a diseased potato. Therefore, the rapid and specific detection of this pathogen is highly important for the effective control of the pathogen. Although several PCR assays have been developed for detection, they cannot afford specific detection of Cms. Therefore, in this study, a computational genome analysis was performed to compare the sequenced genomes of the C. michiganensis subspecies and to identify an appropriate gene for the development of a subspecies-specific PCR primer set (Cms89F/R). The specificity of the primer set based on the putative phage-related protein was evaluated using genomic DNA from seven isolates of Cms and 27 other reference strains. The Cms89F/R primer set was more specific and sensitive than the existing assays in detecting Cms in in vitro using Cms cells and its genomic DNA. This assay was also able to detect at least $1.47{\times}10^2copies/{\mu}l$ of cloned-amplified target DNA, 5 fg of DNA using genomic DNA or $10^{-6}$ dilution point of 0.12 at $OD_{600}$ units of cells per reaction using a calibrated cell suspension.

Development of a pretreatment method for determination of levels of perfluorinated compounds in foods according to fat and protein contents (지방과 단백질 함량에 따른 식품의 과불화화합물 분석을 위한 전처리 방법 확립)

  • Bang, Sunah;Park, Na-youn;Hwang, Youngrim;Kang, Gil Jin;Kim, Hye-Jeong;Kang, Young-Woon;Kho, Younglim;Kim, Jung Hoan
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Perfluorinated compounds (PFCs) have recently been recognized as global environmental pollutants. This study was performed to develop an analytical method for determination of levels of PFCs in food by LC-MS/MS. One hundred and nine food products were divided into two groups based on their fat and protein contents (high and low), following which samples containing high fat and protein contents were pooled and subjected to pretreatment consisting of enzymatic degradation and hexane extraction. The limit of detection of 17 PFCs in the samples were in the range of 0.013-0.145 ng/g. The degrees of precision of detection for group 1 (samples with low fat and protein contents) and group 2 (samples with high fat and protein contents) were 0.8-21.1 and 1.7-28.2%, respectively, with an accuracy of 78.8-109.8% for group 1 and 80-114.5% for group 2. This study indicated that pretreatment of high fat and protein foods with enzymatic degradation and hexane extraction would improve the detection of PFCs in food.