• 제목/요약/키워드: Protein binding

Search Result 3,618, Processing Time 0.036 seconds

The Binding of Food Dyes with Human Serum Albumin

  • Yoon, Jung-Hae;Mckenzie, Mc-Kenzie, Duncan;F.Elizabeth-Prichard
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.269-274
    • /
    • 1996
  • The binding interactions between human serum albumin (HSA) and the edible food dyes amaranth, tartrazine and sunset yellow have been studied. Intrinsic association constants and the free energy changes associated with dye-protein binding at physiological pH for amaranth and tartrazine, and at two different pH values for sunset yellow have been calculated from ultrafiltration data. The temperature dependence $(20-40^{\circ}C)$ of the intrinsic association constants at pH 7.4 for amaranth-HSA and tartrazine-HSA mixtures have been measured, from which a plot of the van't Hoff isochore exhibits a marked change in slope around $30^{\circ}C$ indicating a possible change in protein conformation. The number of dye binding sites on HSA is reported for all the above conditions. HSA-ligand binding enthalpies have been used in conjunction with the N-B transitional binding enthalpy for HSA, to calculate the enthalpy for the N-B transition when ligands are bound with the protein.

  • PDF

Improvement of crop traits using auxin binding protein gene abp57 (옥신 호르몬 결합단백질 ABP57 유전자를 이용한 작물의 형질개선)

  • Kim, Dong-Hern;Lee, Keun-Pyo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • Auxin is a group of small natural and synthetic molecules having diverse regulatory functions in plant growth and development. In this review, two auxin binding proteins identified by biochemical experiments to measure their auxin binding activities and biochemical functions are described. ABP1, a 22 kDa auxin binding protein, shows strong auxin binding affinity and possibly plays an important role in plant development, although its biochemical function are still unclear. ABP57, a 57 kDa soluble protein from rice shoots, has both of IAA binding activity and the plasma membrane proton pump activation. Although it is yet to be accomplished, the improvement of agronomic traits using auxin binding proteins is worth to be considered, since auxin is known to be related to such a diverse crop traits.

Characterization of Lipid Binding Region of Lipoprotein Lipase

  • Lee, Jae-Bok;Kim, Tae-Woong
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.139-144
    • /
    • 1999
  • Lipoprotein lipase (LPL) I san enzyme that catalyzed the hydrolysis of triacylglycerols of chylomicrons and VLDL to produce 20acylglycerols and fatty acids. The enzyme, LPL, is localized on the surface of the capillary endothelium and is widely distributed in extrahepatic tissues including heart, skeletal muscle and adipose tissue. LPL has been isolated from boving milk by affinity chromatography on heparin-separose in 2 M NaCL, 5mM barbital buffer, pH 7.4. To elucidate the lipid-binding regin, LPL was digested with trypsin and then separated by gel filtration. Lipid binding region of LPL has been investigated by recombining LPL peptides with DMPC vesicles. Proteolytic LPL fragments with DMPC were reassembled and stabilized by cholate. Lipid-binding region of LPL was identified by a PTH-automated protein sequencer, as AQQHYPVSAGYTK. The analysis of the secondary structure of the lipid-binding peptides revealed a higher probability of $\alpha$-helix structure compared to the whole LPL protein. The prediction of hydrophobicity of lipid -binding region was highly hydrophobic (-1.1) compared to LPL polypetide(-0.4).

  • PDF

A Comparative Study of the Influence of Miflumic Acid and Phenylbutazone on Warfarin-Plasma Protein Binding (약-약 상호작용 연구(IV) Warfarin의 혈장단백 결합에 대한 Niflumic Acid 및 Phenylbutazone의 영향 비교)

  • 조윤성;양중익
    • YAKHAK HOEJI
    • /
    • v.24 no.2
    • /
    • pp.97-100
    • /
    • 1980
  • To determine in vitro effects of phenylbutazone and niflumic acid on warfarin binding to rabbit serum protein, warfarin was added to the rabbit plasma, and the bound fraction was determined by warfarin-protein complex fluorescence. The bound fraction was decreased by phenylbtazone and niflumic acid. From this effect niflumic acid was found to have the more potent ability to displace warfarin from protein binding sites than phenylbutazone.

  • PDF

Cell cycle regulatory element in the promoter of the human thymidine kinase gene and its binding to factors

  • Kim, Yong-Kyu
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.9-15
    • /
    • 1995
  • When quiescent cells ate stimulated to enter the cell cycle, the thymidine kinase(TK) gene is transcriptionally activated at the border of Gl and 5. In this report we show that the human TK promoter contains multiple protein-binding sites. By site-directed mutagenesis, we identified a protein-binding site on the human TK promoter requited for conferring Gl-S-regulated transcription to a heterologous promoter and dissociated it functionally from an adjacent protein-binding domain containing an inverted CCAAT motif requited for high basal level expression. Substitution-mutation of this site results in constitutive expression of the neo reporter gene in serum-stimulated fibroblasts, as well as in cells arrested in mid-Gl by a temperature-sensitive mutation. The regulatory domains for the human TK promoter exhibit interesting symmetrical features, including a set of CCAAT motifs and sites similar to the novel Yi protein-binding site recently discovered in the mouse TK promoter. Thus, components of the hTK complex is important for hTK gene regulation.

  • PDF

Homology modeling of HSPA1L - METTL21A interaction

  • Lee, Seung-Jin;Cho, Art E.
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.90-95
    • /
    • 2016
  • Heat Shock 70kDa Protein 1-Like(HSPA1L)는 Heat-shock protein70(HSP70) family에 속하는 chaperone protein으로 polypeptide folding, assembly, protein degradation 등 다양한 biological processes에 관여하고 있다. HSPA1L은 human methyltransferase-like protein 21A(METTL21A)에 의해 lysine residue에 methylation이 일어나게 되는데, 암세포에서 일반적인 HSPA1L은 주로 세포질에서 발견되는 반면 methylated HSPA1L의 경우 주로 핵에서 발견이 됨으로써 HSPA1L methylation이 암 세포 성장에 중요할 역할을 할 것이라 추측되며 anti-cancer drug target으로 주목 받고 있다. 하지만 현재 HSPA1L의 구조가 부분적으로만 밝혀져 있어 HSPA1L와 METTL21A가 어떤 residue들이 interaction 하여 binding을 하는지에 대해서 아직 밝혀 지지 않았다. 이로 인해 anti-cancer drug target으로서의 연구에 제한이 있다. 이번 연구에서는 homology modeling(Galaxy-TBM, Galaxy-refine)을 통해 HSPA1L 전체 구조를 밝혀 낸 후, HSPA1L 와 METTL21A를 protein-protein docking을 통해 binding pose 예측을 하였다. 이러한 binding pose를 protein interaction analysis하여 HSPA1L과 METTL21A binding에 관여하는 중요 residue들을 밝혀 냈다. 이러한 structural information은 methylated HSPA1L와 암 세포 성장간의 연관성, 더 나아가 anti-cancer drug 개발로 까지도 이어 질 수 있을 것이라 생각한다.

  • PDF

Isolation of the Gene for Lipocortin-1 Binding Protein Using Yeast Two Hybrid Assay (Yeast Two Hybrid Assay를 이용한 Lipocortin-1 결합 단백질 유전자의 분리)

  • Lee, Koung-Hoa;Kim, Jung-Woo
    • The Journal of Natural Sciences
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 1997
  • To study the mechanism of lipocortin-1, the 37 kDa protein, one of the annxin superfamily thought to be a second messenger during the Glucocorticoid dependent anti-inflammatory action, the gene for lipocortin-1 binding protein was isolated using the yeast two hybrid assay, the yeast based genetic assay recognizing the protein-protein interaction. The results showed that this gene has a weak homology to the for the human serine proteinase.

  • PDF

The Binding Properties of Glycosylated and Non- Glycosylated Tim-3 Molecules on $CD4^+CD25^+$T Cells

  • Lee, Mi-Jin;Heo, Yoo-Mi;Hong, Seung-Ho;Kim, Kyong-Min;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.9 no.2
    • /
    • pp.58-63
    • /
    • 2009
  • Background: T cell immunoglobulin and mucin domain containing 3 protein (Tim-3) expressed on terminally differentiated Th1 cells plays a suppressive role in Th1-mediated immune responses. Recently, it has been shown that N-glycosylation affects the binding activity of the Tim-3-Ig fusion protein to its ligand, galectin-9, but the binding properties of non-glycosylated Tim-3 on $CD4^+CD25^+$T cells has not been fully examined. In this study, we produced recombinant Tim-3-Ig fusion proteins in different cellular sources and its N-glycosylation mutant forms to evaluate their binding activities to $CD4^+CD25^+$T cells. Methods: We isolated and cloned Tim-3 cDNA from BALB/C mouse splenocytes. Then, we constructed a mammalian expression vector and a prokaryotic expression vector for the Tim-3-Ig fusion protein. Using a site directed mutagenesis method, plasmid vectors for Tim-3-Ig N-glycosylation mutant expression were produced. The recombinant protein was purified by protein A sepharose column chromatography. The binding activity of Tim-3-Ig fusion protein to $CD4^+CD25^+$T cells was analyzed using flow cytometry. Results: We found that the nonglycosylated Tim-3-Ig fusion proteins expressed in bacteria bound to $CD4^+CD25^+$T cells similarly to the glycosylated Tim-3-Ig protein produced in CHO cells. Further, three N-glycosylation mutant forms (N53Q, N100Q, N53/100Q) of Tim-3-Ig showed similar binding activities to those of wild type glycosylated Tim-3-Ig. Conclusion: Our results suggest that N-glycosylation of Tim-3 may not affect its binding activity to ligands expressed on $CD4^+CD25^+$T cells.

A NELL-1 Binding Protein: Vimentin

  • Chae, Hwa-Sung;Kim, Young-Ho
    • Journal of Korean Dental Science
    • /
    • v.4 no.1
    • /
    • pp.6-13
    • /
    • 2011
  • Purpose: Craniosynostosis (CS), one of the most common congenital craniofacial deformities, is the premature closure of cranial sutures. NELL-1 is a novel molecule overexpressed during premature cranial suture closure in human CS. From a functional perspective, NELL-1 has been reported to accelerate chondrocyte maturation and modulate calvarial osteoblast differentiation and apoptosis pathways. The mechanism through which NELL-1 induces these phenomena, however, remains unclear. The purpose of this study is to identify the NELL-1 binding protein(s) through which the biologic mechanism of NELL-1 can be further investigated. Materials and Methods: Far-Western and Immunoprecipitation (IP) assays were performed, independently and in sequence, followed by mass spectrometry to identify the NELL-1 binding proteins. Reverse IP was used to verify and confirm candidate binding protein. Results: The only confirmative protein from current experimentation was vimentin. Vimentin is the major structural component of the intermediate filaments. Conclusion: The present study identified and confirmed vimentin as a NELL-1 binding protein, which opened up a new window to mechanistically facilitate studies on this CS-associated molecule.

A Ser/Thr Specific Protein Kinase Activates the Mouse Rantes Gene after Lipolpolysaccharide STimulation

  • Kim, Youn-Uck;Kim, Youn-Hwoan;An, Duek -Jun;Kwon, Hyuk-Chu
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.314-320
    • /
    • 2001
  • Macrophages stimulated by lipopolysaccharide(LPS) from gram negative bacteria undergo activation of a group of immediate early genes including Rantes. The mouse Rantes gene promoter region contains an LPS rsponsive element(LPE) We detected 3 specific bands termed B1, B2 and 3 formed by the interaction of the LPE and proteins found in LPS-stimulated RAW 367.7 cells. An additional band B4 was determined to be an Ap-1 binding protein. The B1 band appears within 1 hour of LPS nuclear extracts from LPS-stimulation, and this protein kinase enhances B1 and formation. The B1 band can be converted to band B2/B3 by adding specific heparin column fraction purified Ser/Thr specific protein phosphatases PP-1 and PP-2A can stimulate the same conversion to about the same extent. Thus, the formation of the LRE sequence binding complex appears to be regulated by Ser/Thr protein kinase and one or more Ser/Thr specific phosphatases. At least four proteins are involved in the trgulation of the LRE-dependent Rants experssion: two binding factors that bind directly to the target sequences. and two factors that control their binding. The future purification and characterization of these binding pro-teins will reveal in detail the mechanism of Rantes gene activation after LPS stimulation.

  • PDF