• Title/Summary/Keyword: Protein and energy metabolism

Search Result 332, Processing Time 0.032 seconds

Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2

  • Lee, Yun Yeong;Ryu, Min Sook;Kim, Hong Seok;Suganuma, Masami;Song, Kye Yong;Lim, In Kyoung
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.266-279
    • /
    • 2016
  • The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) ${\alpha}$ and $PKC{\beta}1$ exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. $PKC{\alpha}$ accompanied pErk1/2 to the nucleus after freeing it from $PEA-15pS^{104}$ via $PKC{\beta}1$ and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of $PKC{\alpha}$ were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated $PKC{\alpha}$ expression and increased epidermal and hair follicle cell proliferation. Thus, $PKC{\alpha}$ downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear $PKC{\alpha}$ degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of $PKC{\alpha}$ expression following TPA treatment reduces pErk1/2-activated SP1 biding to the $p21^{WAF1}$ gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.

[Retraction] A Review on the Role of Irisin in Insulin Resistance and Type 2 Diabetes Mellitus

  • Gizaw, Mamo;Anandakumar, Pandi;Debela, Tolessa
    • Journal of Pharmacopuncture
    • /
    • v.20 no.4
    • /
    • pp.235-242
    • /
    • 2017
  • Irisin is a novel hormone like polypeptide that is cleaved and secreted by an unknown protease from fibronectin type III domain-containing protein 5 (FNDC5), a membrane-spanning protein and which is highly expressed in skeletal muscle, heart, adipose tissue, and liver. Since its discovery in 2012, it has been the subject of many researches due to its potent physiological role. It is believed that understanding irisin's function may be the key to comprehend many diseases and their development. Irisin is a myokine that leads to increased energy expenditure by stimulating the 'browning' of white adipose tissue. In the first description of this hormone, increased levels of circulating irisin, which is cleaved from its precursor fibronectin type III domain-containing protein 5, were associated with improved glucose homeostasis by reducing insulin resistance. Irisin is a powerful messenger, sending the signal to determine the function of specific cells, like skeletal muscle, liver, pancreas, heart, fat and the brain. The action of irisin on different targeted tissues or organs in human being has revealed its physiological functions for promoting health or executing the regulation of variety of metabolic diseases. Numerous studies focus on the association of irisin with metabolic diseases which has gained great interest as a potential new target to combat type 2 diabetes mellitus and insulin resistance. Irisin is found to improve insulin resistance and type 2 diabetes by increasing sensitization of the insulin receptor in skeletal muscle and heart by improving hepatic glucose and lipid metabolism, promoting pancreatic ${\beta}$ cell functions, and transforming white adipose tissue to brown adipose tissue. This review is a thoughtful attempt to summarize the current knowledge of irisin and its effective role in mediating metabolic dysfunctions in insulin resistance and type 2 diabetes mellitus.

Gene Expression Analyses in Hypothalami of Immobilization-stressed and BoshimgeonbiTang-treated Mice Using cDNA Microarray (구속 스트레스 (immobilization stress)를 가한 rat의 hypothalamus에서의 유전자 발현 및 포심건비탕의 항스트레스 효과에 관한 cDNA microarray 분석)

  • Lee Han Chang;Yeam Mi Jung;Kim Gun Ho;Choi Kang Duk;Lee Seoung Hee;Shim Insop;Lee Hye Jung;Hahm Dae Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1393-1403
    • /
    • 2003
  • The genetic effects of restraint stress challenge on HPA axis and the therapeutic effect of Boshimgeonbi-Tang on the stress were studied with cDNA microarray analyses on hypothalamus using an immobilization-stress mouse as stress model. Male CD-1 mice were restrained in a tightly fitted and ventilated vinyl holder for 2hours once a day, and this challenge was repeated for seven consecutive days. The body weights of the immobilization-stress mice were diminished about 25 percent degree as compared to normal ones. Seven days later, total RNA was extracted from the organs of the mouse, body-labeled with CyDye/sup TM/ fluorescence dyes (Amersham Bioscience Co., NJ), and then hybridized to cDNA microarray chip. Scanning and analyzing the array slides were carried out using GenePix 4000 series scanner and GenePix Pro/sup TM/ analyzing program, respectively. The expression profiles of 109 genes out of 6000 genes on the chip were significantly modulated in hypothalamus by the immobilization stress. Energy metabolism-, lipid metabolism-, apoptosis- and signal transduction-related genes were transcriptionally activated whereas DNA repair-, protein biosynthesis-, and structure integrity-related genes were down-regulated in hypothalamus. The 58 genes were up-regulated by the mRNA expression folds of 1.5 to 7.9. and the 51 genes were down-regulated by 1.5 - 3.5 fold. The 20 genes among them were selected to confirm the expression profiles by RT-PCR. The mRNA expression levels of Tnfrsf1a (apoptosis), Calm2 (cell cycle), Bag3 (apoptosis), Hspe1 (protein folding), Aatk (apoptosis), Dffa (apoptosis), Itgb1 (cell adhesion), Vcam1 (cell adhesion), Fkbp5 (protein folding), BDNF (neuron survival) were restored to the normal one by the treatment of Boshimgeonbi-Tang.

Effects of Caloric Restriction on Endocrine Functions and Body Fat Distribution in Overweight Premenopausal Women, Related to their UCP3 (Uncoupling Protein 3) Genotypes

  • Lee, Jong-Ho;Kim, Oh-Yoen;Kim, Ji-Young;Park, Kyoung;Yangsoo Jang
    • Nutritional Sciences
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2002
  • A mutation in the promoter region of uncoupling protein 3 (UCF3), specifically the -55C longrightarrow T transition, may influence an individual's energy metabolism and body weight. The objective of this study was to investigate the effect of a weight reduction program on endocrine functions and body fat distribution, related to UCP3 promoter genotype. Ninety overweight pre-menopausal female subjects participated in the weight reduction program at Yonsei University Hospital, and were placed on a calorie-restricted diet (300 kcal less than their daily requirements) for 12 weeks. After 12 weeks, all subjects on the program lost approximately 5% of their initial body weights and had lower Body Mass Index (BMI) values. Among the 90 women, 56 had a normal (without mutation) UCP3 genotype, while 34 women had mutations in the promoter region of UCP3. Despite similar weight reductions in both groups, a significantly higher decrease in abdominal adipose tissue was observed in the normal UCP3 genotype group, compared to the group with mutations. In particular, there was a significant reduction of fat at the lumbar 1 (Ll) level in the without-mutation group. Serum levels of total cholesterol, apolipoprotein Al were significantly decreased in the without-mutation group, by 4.4% and 5.7% respectively. Serum levels of hormones were not significantly changed in both groups artier the intervention. However, in the group without the mutations, the leptin level significantly reduced by 23.4% (p<0.001). Serum free fatty acid (FFA) concentration was significantly increased in the group with mutation following the weight reduction program. On the other hand, FFA responses were shown similar increases in both groups. In conclusion, although no difference was found in the magnitude of weight reduction in both groups, there were significant differences in body fat distribution and in endocrine function between the groups.

Proteomic change by Korean Red Ginseng in the substantia nigra of a Parkinson's disease mouse model

  • Kim, Dongsoo;Kwon, Sunoh;Jeon, Hyongjun;Ryu, Sun;Ha, Ki-Tae;Kim, Seungtae
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.429-435
    • /
    • 2018
  • Background: Recent studies have shown that Korean Red Ginseng (KRG) successfully protects against dopaminergic neuronal death in the nigrostriatal pathway of a Parkinson's disease (PD) mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration; however, the mechanism has yet to be identified. Therefore, in this study we used two-dimensional electrophoresis to investigate the effects of KRG on the changes in protein expression in the substantia nigra (SN) of MPTP-treated mice. Methods: Male C57BL/6 mice (9 wk old) were intraperitoneally administered MPTP (20 mg/kg) four times at 2-h intervals, after which KRG (100 mg/kg) was orally administered once a day for 5 d. Two hours after the fifth KRG administration, a pole test was conducted to evaluate motor function, after which the brains were immediately collected. Survival of dopaminergic neurons was measured by immunohistochemistry, and protein expression was measured by two-dimensional electrophoresis and Western blotting. Results: KRG alleviated MPTP-induced behavioral dysfunction and neuronal toxicity in the SN. Additionally, the expression of eight proteins related to neuronal formation and energy metabolism for survival were shown to have changed significantly in response to MPTP treatment or KRG administration. KRG alleviated the downregulated protein expression following MPTP administration, indicating that it may enhance neuronal development and survival in the SN of MPTP-treated mice. Conclusion: These findings indicate that KRG may have therapeutic potential for the treatment of patients with PD.

Dietary Exposure to Transgenic Rice Expressing the Spider Silk Protein Fibroin Reduces Blood Glucose Levels in Diabetic Mice: The Potential Role of Insulin Receptor Substrate-1 Phosphorylation in Adipocytes

  • Park, Ji-Eun;Jeong, Yeon Jae;Park, Joon Beom;Kim, Hye Young;Yoo, Young Hyun;Lee, Kwang Sik;Yang, Won Tae;Kim, Doh Hoon;Kim, Jong-Min
    • Development and Reproduction
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 2019
  • Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance (IR). T2DM is correlated with obesity and most T2DM medications have been developed for enhancing insulin sensitivity. Silk protein fibroin (SPF) from spiders has been suggested as an attractive biomaterial for medical purposes. We generated transgenic rice (TR) expressing SPF and fed it to diabetic $BKS.Cg-m+/+Lepr^{db}$ mice to monitor the changes in blood glucose levels and adipose tissue proteins associated with energy metabolism and insulin signaling. In the present study, the adipocyte size in abdominal fat in TR-SPF-fed mice was remarkably smaller than that of the control. Whereas the adenosine monophosphate-activated protein kinase (AMPK)-activated protein kinase and insulin receptor substrate 1 (IRS1) protein levels were increased in abdominal adipose tissues after TR-SPF feeding, levels of six-transmembrane protein of prostate 2 (STAMP2) proteins decreased. Phosphorylation of AMPK at threonine 172 and IRS1 at serine 307 and tyrosine 632 were both increased in adipose tissues from TR-SPF-fed mice. Increased expression and phosphorylation of IRS1 at both serine 307 and tyrosine 632 in adipose tissues indicated that adipocytes obtained from abdominal fat in TR-SPF-fed mice were more susceptible to insulin signaling than that of the control. STAMP2 protein levels decreased in adipose tissues from TR-SPF-fed mice, indicating that STAMP2 proteins were reducing adipocytes that were undergoing lipolysis. Taken together, this study showed that TR-SPF was effective in reducing blood glucose levels in diabetic mice and that concurrent lipolysis in abdominal adipocytes was associated with alterations of AMPK, IRS1, and STAMP2. Increased IRS1 expression and its phosphorylation by TR-SFP were considered to be particularly important in the induction of lipolysis in adipocytes, as well as in reducing blood glucose levels in this animal model.

Effects of taurine and ginseng extracts on energy metabolism during exercise and their anti-fatigue properties in mice

  • Kim, Jisu;Beak, Suji;Ahn, Sanghyun;Moon, Byung Seok;Kim, Bom Sahn;Lee, Sang Ju;Oh, Seung Jun;Park, Hun-Young;Kwon, Seung Hae;Shin, Chul Ho;Lim, Kiwon;Lee, Kang Pa
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.33-45
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Ginseng extract (GSE) and taurine (TR) are widely used antifatigue resources in functional foods. However, the mechanism underlying the antifatigue effects of GSE and TR are still unclear. Hence, we investigated whether GSE and TR have synergistic effects against fatigue in mice. MATERIALS/METHODS: L6 cells were treated with different concentrations of TR and GSE, and cell viability was determined using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium. Oxidative stress was analyzed by immunocytochemistry using MitoTrackerTM Red FM and an anti-8-oxoguanine antibody. Respiratory gas analysis was performed to investigate metabolism. Expression of an activated protein kinase was analyzed using immunohistochemistry. Gene expression of cluster of differentiation 36 and pyruvate dehydrogenase lipoamide kinase isozyme 4 was measured using reverse transcription-polymerase chain reaction. Mice were orally administered TR, GSE, or their combination for 30 days, and then fatigue-related parameters, including lactate, blood urea nitrogen, and glycogen, were measured after forced swimming. RESULTS: TR and GSE reduced oxidative stress levels in hydrogen peroxide-stimulated L6 cells and enhanced the oxygen uptake and lipid metabolism in mice after acute exercise. After oral administration of TR or GSE for 30 days, the fatigue-related parameters did not change in mice. However, the mice administered GSE (400 mg/kg/day) alone for 30 days could swim longer than those from the other groups. Further, no synergistic effect was observed after the swimming exercise in mice treated with the TR and GSE combination for 30 days. CONCLUSIONS: Taken together, our data suggest that TR and GSE may exert antifatigue effects in mice after acute exercise by enhancing oxygen uptake and lipid oxidation.

Nutritional Regulation of GLUT Expression, Glucose Metabolism, and Intramuscular Fat Content in Porcine Muscle

  • Katsumata, M.;Kaji, Y.;Takada, R.;Dauncey, M.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1297-1304
    • /
    • 2007
  • We conducted a series of investigations in order to elucidate role of nutritional status in regulating GLUT expression and energy metabolism in porcine muscle. Firstly, the role of mild undernutrition in regulating muscle GLUT gene expression and function was studied in growing pigs (3 wk of age) on a high (H) or low (L) food intake (H = 2L) at $35^{\circ}C$ or $26^{\circ}C$. Low food intake selectively upregulates GLUT1 and GLUT4 gene expression; mRNA levels were elevated in longissimus dorsi (L. dorsi) and rhomboideus muscles but not in diaphragm or cardiac muscles. Our next step was to determine whether dietary lysine, a major primary limiting amino acid in diets for pigs, affects muscle GLUT4 expression. Pigs of 6 wk of age were pair-fed a control or low lysine (LL) diet. The control diet contained optimal amounts of all essential amino acids, including 1.15% lysine. The LL diet was similar but contained only 0.70% lysine. GLUT4 mRNA expression was upregulated by the LL diet in L. dorsi and rhomboideus muscles, whereas that in cardiac muscle was unaffected. GLUT4 protein abundance was also higher in rhomboideus muscle of animals on the LL diet. We conducted another investigation in order to elucidate effects of the LL diet on post-GLUT4 glucose metabolism. Activity of hexokinase was unaffected by dietary lysine levels while that of citrate synthase was higher both in L. dorsi and rhomboideus muscles of pigs fed on the LL diet. Glucose 6-phosphate content was higher in L. dorsi msucle in the LL group. Glycogen content was higher both in L. dorsi and rhomboideus muscles in the LL group. Further, we determined the effects of dietary lysine levels on accumulation of intramuscular fat (IMF) in L. dorsi muscle of finishing pigs. A low lysine diet (lysine content was 0.40%) meeting approximately 70% of the requirement of lysine was given to finishing pigs for two months. IMF contents in L. dorsi of the pigs given the low lysine diet were twice higher than those of the pigs fed on a control diet (lysine content was 0.65%). Finally, we proved that a well known effect of breadcrumbs feeding to enhance IMF of finishing pigs could be attributed to shortage of amino acids in diets including breadcrumbs.

Effects of Dietary Restriction on the Expression of Lipid Metabolism and Growth Hormone Signaling Genes in the Longissimus dorsi Muscle of Korean Cattle Steers

  • Kang, H.J.;Trang, N.H.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1187-1193
    • /
    • 2015
  • This study determined the effects of dietary restriction on growth and the expression of lipid metabolism and growth hormone signaling genes in the longissimus dorsi muscle (LM) of Korean cattle. Thirty-one Korean cattle steers (average age 10.5 months) were allocated to normal (N; n = 16) or dietary restriction (DR; n = 15) groups. The feeding trial consisted of two stages: for the 8-month growing period, the DR group was fed 80% of the food intake of the normal diet, and for the 6-month growth-finishing period, the DR group was fed a DR total mixed ration with 78.4% of the crude protein and 64% of the net energy for gain of the normal diet. The LM was biopsied 5 months (period 1 [P1] at 15.5 months of age) and 14 months (period 2 [P2] at 24.5 months of age) after the start of feeding. The mRNA levels were determined using real-time polymerase chain reaction. Body weight, daily feed intake, average daily gain, and feed efficiency were lower in the DR group compared with the normal group at both P1 and P2. At P1, the lipogenic fatty acid synthase (FASN) mRNA levels were lower (p<0.05) in the DR group compared with the normal group. The DR group tended (p = 0.06) to have higher of levels of growth hormone receptor (GHR) mRNA than the normal group. At P2, the DR group tended to have lower (p = 0.06) androgen receptor (AR) mRNA levels than the normal group. In conclusion, our results demonstrate that dietary restriction partially decreases the transcription of lipogenic FASN and growth hormone signaling AR genes, but increases transcription of the GHR gene. These changes in gene transcription might affect body fat accumulation and the growth of the animals.

Deletion of cg1360 Affects ATP Synthase Function and Enhances Production of L-Valine in Corynebacterium glutamicum

  • Wang, Xiaochen;Yang, Hongyu;Zhou, Wei;Liu, Jun;Xu, Ning
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1288-1298
    • /
    • 2019
  • Bacterial ATP synthases drive ATP synthesis by a rotary mechanism, and play a vital role in physiology and cell metabolism. Corynebacterium glutamicum is well known as an industrial workhorse for amino acid production, and its ATP synthase operon contains eight structural genes and two adjacent genes, cg1360 and cg1361. So far, the physiological functions of Cg1360 (GenBank CAF19908) and Cg1361 (GenBank CAF19909) remain unclear. Here, we showed that Cg1360 was a hydrophobic protein with four transmembrane helices (TMHs), while no TMH was found in Cg1361. Deletion of cg1360, but not cg1361, led to significantly reduced cell growth using glucose and acetic acid as carbon sources, reduced F1 portions in the membrane, reduced ATP-driven proton-pumping activity and ATPase activity, suggesting that Cg1360 plays an important role in ATP synthase function. The intracellular ATP concentration in the ${\Delta}cg1360$ mutant was decreased to 72% of the wild type, while the NADH and NADPH levels in the ${\Delta}cg1360$ mutant were increased by 29% and 26%, respectively. However, the ${\Delta}cg1361$ mutant exhibited comparable intracellular ATP, NADH and NADPH levels with the wild-type strain. Moreover, the effect of cg1360 deletion on L-valine production was examined in the L-valine-producing V-10 strain. The final production of L-valine in the $V-10-{\Delta}cg1360$ mutant reached $9.2{\pm}0.3g/l$ in shake flasks, which was 14% higher than that of the V-10 strain. Thus, Cg1360 can be used as an effective engineering target by altering energy metabolism for the enhancement of amino acid production in C. glutamicum.