DOI QR코드

DOI QR Code

Effects of Dietary Restriction on the Expression of Lipid Metabolism and Growth Hormone Signaling Genes in the Longissimus dorsi Muscle of Korean Cattle Steers

  • Kang, H.J. (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Trang, N.H. (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Baik, M. (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2015.01.21
  • Accepted : 2015.03.02
  • Published : 2015.08.01

Abstract

This study determined the effects of dietary restriction on growth and the expression of lipid metabolism and growth hormone signaling genes in the longissimus dorsi muscle (LM) of Korean cattle. Thirty-one Korean cattle steers (average age 10.5 months) were allocated to normal (N; n = 16) or dietary restriction (DR; n = 15) groups. The feeding trial consisted of two stages: for the 8-month growing period, the DR group was fed 80% of the food intake of the normal diet, and for the 6-month growth-finishing period, the DR group was fed a DR total mixed ration with 78.4% of the crude protein and 64% of the net energy for gain of the normal diet. The LM was biopsied 5 months (period 1 [P1] at 15.5 months of age) and 14 months (period 2 [P2] at 24.5 months of age) after the start of feeding. The mRNA levels were determined using real-time polymerase chain reaction. Body weight, daily feed intake, average daily gain, and feed efficiency were lower in the DR group compared with the normal group at both P1 and P2. At P1, the lipogenic fatty acid synthase (FASN) mRNA levels were lower (p<0.05) in the DR group compared with the normal group. The DR group tended (p = 0.06) to have higher of levels of growth hormone receptor (GHR) mRNA than the normal group. At P2, the DR group tended to have lower (p = 0.06) androgen receptor (AR) mRNA levels than the normal group. In conclusion, our results demonstrate that dietary restriction partially decreases the transcription of lipogenic FASN and growth hormone signaling AR genes, but increases transcription of the GHR gene. These changes in gene transcription might affect body fat accumulation and the growth of the animals.

Keywords

References

  1. Ahn, J., X. Li, Y. M. Choi, S. Shin, S. A. Oh, Y. Suh, T. H. Nguyen, M. Baik, S. Hwang, and K. Lee. 2014. Differential expressions of G0/G1 switch gene 2 and comparative gene identification-58 are associated with fat content in bovine muscle. Lipids 49:1-14. https://doi.org/10.1007/s11745-013-3866-3
  2. Baik, M., J. H. Yu, and L. Hennighausen. 2011. Growth hormone-STAT5 regulation of growth, hepatocellular carcinoma, and liver metabolism. Ann. NY Acad. Sci. 1229:29-37. https://doi.org/10.1111/j.1749-6632.2011.06100.x
  3. Baik, M., T. T. T. Vu, M. Y. Piao, and H. J. kang. 2014. Association of DNA methylation levels with tissue-specific expression of adipogenic and lipogenic genes in longissimus dorsi muscle of Korean Cattle. Asian Australas. J. Anim. Sci. 27:1493-1498. https://doi.org/10.5713/ajas.2014.14283
  4. Blum, J. W., W. Schnyder, P. L. Kunz, A. K. Blom, H. Bickel, and A. Schurch. 1985. Reduced and compensatory growth: Endocrine and metabolic changes during feed restriction and refeeding in steers. J. Nutr. 115:417-424. https://doi.org/10.1093/jn/115.4.417
  5. Bong, J. J., J. Y. Jeong, P. Rajasekar, Y. M. Cho, E. G. Kwon, H. C. Kim, B. H. Paek, and M. Baik. 2012. Differential expression of genes associated with lipid metabolism in longissimus dorsi of Korean bulls and steers. Meat Sci. 91:284-293. https://doi.org/10.1016/j.meatsci.2012.02.004
  6. Bowling, R. A., G. C. Smith, Z. L. Carpenter, T. R. Dutson, and W. M. Oliver. 1977. Comparison of forage-finished and grainfinished beef carcasses. J. Anim. Sci. 45:209-215. https://doi.org/10.2527/jas1977.452209x
  7. Brandstetter, A. M., M. W. Pfaffl, J. F. Hocquette, D. E. Gerrard, B. Picard, Y. Geay, and H. Sauerwein. 2000. Effects of muscle type, castration, age, and compensatory growth rate on androgen receptor mRNA expression in bovine skeletal muscle. J. Anim. Sci. 78:629-637. https://doi.org/10.2527/2000.783629x
  8. Choi, B., K. Ryu, J. Bong, J. Lee, Y. Choy, S. Son, O. Han, and M. Baik. 2010. Comparison of steroid hormone concentrations and mRNA levels of steroid receptor genes in longissimus dorsi muscle and subcutaneous fat between bulls and steers and association with carcass traits in Korean cattle. Livest. Sci. 131:218-226. https://doi.org/10.1016/j.livsci.2010.04.004
  9. da Costa, N., C. McGillivray, Q. Bai, J. D. Wood, G. Evans, and K. C. Chang. 2004. Restriction of dietary energy and protein induces molecular changes in young porcine skeletal muscles. J. Nutr. 134:2191-2199. https://doi.org/10.1093/jn/134.9.2191
  10. Dauncey, M. J., K. A. Burton, P. White, A. P. Harrison, R. S. Gilmour, C. Duchamp, and D. Cattaneo. 1994. Nutritional regulation of growth hormone receptor gene expression. FASEB. J. 8:81-88. https://doi.org/10.1096/fasebj.8.1.7507871
  11. Davey, H. W., T. Xie, M. J. McLachlan, R. J. Wilkins, D. J. Waxman, and D. R. Grattan. 2001. STAT5b is required for GH-induced liver IGF-I gene expression. Endocrinology 142:3836-3841. https://doi.org/10.1210/endo.142.9.8400
  12. Drouillard, J. S., C. L. Ferrell, T. J. Klopfenstein, and R. A. Britton. 1991. Compensatory growth following metabolizable protein or energy restrictions in beef steers. J. Anim. Sci. 69:811-818. https://doi.org/10.2527/1991.692811x
  13. Hayden, J. M., J. E. Williams, and R. J. Collier. 1993. Plasma growth hormone, insulin-like growth factor, insulin, and thyroid hormone association with body protein and fat accretion in steers undergoing compensatory gain after dietary energy restriction. J. Anim. Sci. 71:3327-3338. https://doi.org/10.2527/1993.71123327x
  14. Herbst, K. L. and S. Bhasin. 2004. Testosterone action on skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 7:271-277. https://doi.org/10.1097/00075197-200405000-00006
  15. Hornick, J. L., C. Van Eenaeme, M. Diez, V. Minet, and L. Istasse. 1998. Different periods of feed restriction before compensatory growth in Belgian Blue bulls: II. Plasma metabolites and hormones. J. Anim. Sci. 76:260-271. https://doi.org/10.2527/1998.761260x
  16. Isaksson, O. G. P., S. Eden, and J. O. Jansson. 1985. Mode of action of pituitary growth hormone on target cells. Annu. Rev. Physiol. 47:483-499. https://doi.org/10.1146/annurev.ph.47.030185.002411
  17. Jeong, J. Y., J. S. Kim, T. H. Nguyen, H. J. Lee, and M. Baik. 2013b. Wnt/$\beta$-catenin signaling and adipogenic genes are associated with intramuscular fat content in the longissimus dorsi muscle of Korean cattle. Anim. Genet. 44:627-635. https://doi.org/10.1111/age.12061
  18. Jeong, J., J. Bong, G. D. Kim, S. T. Joo, H. J. Lee, and M. Baik. 2013a. Transcriptome changes favoring intramuscular fat deposition in the longissimus muscle following castration of bulls. J. Anim. Sci. 91:4692-4704. https://doi.org/10.2527/jas.2012-6089
  19. Kappeler, L., C. De Magalhaes Filho, P. Leneuve, J. Xu, N. Brunel, C. Chatziantoniou, Y. Le Bouc, and M. Holzenberger. 2009. Early postnatal nutrition determines somatotropic function in mice. Endocrinology 150:314-323. https://doi.org/10.1210/en.2008-0981
  20. Katsumata, M., D. Cattaneo, P. White, K. A. Burton, and M. J. Dauncey. 2000. Growth hormone receptor gene expression in porcine skeletal and cardiac muscles is selectively regulated by postnatal undernutrition. J. Nutr. 130:2482-2488. https://doi.org/10.1093/jn/130.10.2482
  21. Kelly, A. K., S. M. Waters, M. McGee, J. A. Browne, D. A. Magee, and D. A. Kenny. 2013. Expression of key genes of the somatotropic axis in longissimus dorsi muscle of beef heifers phenotypically divergent for residual feed intake. J. Anim. Sci. 91:159-167. https://doi.org/10.2527/jas.2012-5557
  22. Klover, P., W. Chen, B. M. Zhu, and L. Hennighausen. 2009. Skeletal muscle growth and fiber composition in mice are regulated through the transcription factors STAT5a/b: linking growth hormone to the androgen receptor. FASEB J. 23:3140-3148. https://doi.org/10.1096/fj.08-128215
  23. Kwon, D. H., W. Kang, Y. S. Nam, M. S. Lee, I. K. Lee, H. J. Kim, P. Rajasekar J. H. Lee, and M. Baik. 2012. Dietary protein restriction induces steatohepatitis and alters leptin/signal transducers and activators of transcription 3 signaling in lactating rats. J. Nutr. Biochem. 23:791-799. https://doi.org/10.1016/j.jnutbio.2011.04.002
  24. Laliotis, G. P., I. Bizelis, and E. Rogdakis. 2010. Comparative approach of the de novo fatty acid synthesis (Lipogenesis) between ruminant and non ruminant mammalian species: From biochemical level to the main regulatory lipogenic genes. Curr. Genomics 11:168-183. https://doi.org/10.2174/138920210791110960
  25. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta{Y}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  26. Murphy, T. A. and S. C. Loerch. 1994. Effects of restricted feeding of growing steers on performance, carcass characteristics, and composition. J. Anim. Sci. 72:2497-2507. https://doi.org/10.2527/1994.7292497x
  27. Roberts, A. J., S. I. Paisley, T. W. Geary, E. E. Grings, R. C. Waterman, and M. D. MacNeil. 2007. Effects of restricted feeding of beef heifers during the postweaning period on growth, efficiency, and ultrasound carcass characteristics. J. Anim. Sci. 85:2740-2745. https://doi.org/10.2527/jas.2007-0141
  28. Rossi, J. E., S. C. Loerch, S. J. Moeller, and J. P. Schoonmaker. 2001. Effects of programmed growth rate and days fed on performance and carcass characteristics of feedlot steers. J. Anim. Sci. 79:1394-1401. https://doi.org/10.2527/2001.7961394x
  29. Schmidt, T. B., K. C. Olson, M. L. Linville, J. H. Clark, D. L. Meyer, M. M. Brandt, C. A. Stahl, G. K. Rentfrow, and E. P. Berg. 2005. Effects of dry matter intake restriction on growth performance and carcass merit of finishing steers. Prof. Anim. Sci. 21:332-38.
  30. Tatum, J. D., B. L. Klein, F. L. Williams Jr., and R. A. Bowling. 1988. Influence of diet on growth rate and carcass composition of steers differing in frame size and muscle thickness. J. Anim. Sci. 66:1942-954. https://doi.org/10.2527/jas1988.6681942x

Cited by

  1. - Invited Review - Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants vol.29, pp.1, 2015, https://doi.org/10.5713/ajas.16.0001R
  2. Expression of genes related to the regulation of muscle protein turnover in Angus and Nellore bulls1 vol.94, pp.4, 2016, https://doi.org/10.2527/jas.2015-9924
  3. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Factors influencing bovine intramuscular adipose tissue development and cellularity1 vol.95, pp.5, 2017, https://doi.org/10.2527/jas.2016.1036
  4. A Transcriptomic Study of the Tail Fat Deposition in Two Types of Hulun Buir Sheep According to Tail Size and Sex vol.9, pp.9, 2015, https://doi.org/10.3390/ani9090655
  5. Effects of dietary amylose to amylopectin ratio on growth performance, carcass quality characteristics and meat fatty acids in Chinese Qinchuan cattle vol.20, pp.12, 2021, https://doi.org/10.1016/s2095-3119(20)63576-6