• Title/Summary/Keyword: Protein Three-dimensional Structure

Search Result 119, Processing Time 0.031 seconds

Analysis of the Three Dimensional Structure of Envelope Protein of the Japanes encephalitis virus Isolated in Korea (국내에서 분리된 일본뇌염 바이러스의 Envelope Protein의 3차구조 분석)

  • Nam, Jae-Hwan;Chae, Soo-Lim;Kim, Eung-Jung;Yoon, Kyung-Sik;Lee, Ho-Dong;Koh, Hyun-Chul;Cho, Hae-Wol
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.2
    • /
    • pp.209-216
    • /
    • 1997
  • Three dimensional structures of envelope protein from Korean isolates and Nakayama-NIH strain of Japanese encephalitis virus (JEV) were deduced by a computer program (HyperChem 4.0 Chemplus 1.0) based on the data of the three dimentional structure of Tick-borne encephalitis virus. In the three dimensional structure of envelope protein, neutralizing epitope and T-helper cell recognition site of C-terminal region of Korean isolates were structually similar to those of Nakayama-NIH but the N-terminal region was not. Korean JE isolates were compared with Nakayama-NIH strain by using cross-neutralization antibody test. Neutralizing activities of Korean isolates derived from guinea pigs were higher than those of Nakayama-NIH strain against Korean isolates, although the polyclonal antibody titers of Nakayama-NlH showed 1:160 to 1:640 against Korean isolates. According to the results from three dimentional structures and cross-neutralization analyses, the antigenic difference between Korean JE isolates and Nakayama-NIH strain may be dependent on structural difference of envelope protein.

  • PDF

Three-dimensional Structure of Protein Using Electron Microscopy (전자현미경을 이용한 단백질 3차원 구조)

  • Cheong, Gang-Won
    • Applied Microscopy
    • /
    • v.30 no.3
    • /
    • pp.241-248
    • /
    • 2000
  • Electron microscopy has used for analysing the structure of protein over 30 years. Bacteriohodopsin and porins are used as examples to illustrate the progress that has recently been made in attaining resolutions which hitherto were regarded as exclusive to the realm of x-ray crystallography. To determine a protein structure used by electron microscopy, one must pass through a number of basic steps including preparation of specimen , data acquisition and data processing.

  • PDF

In silico annotation of a hypothetical protein from Listeria monocytogenes EGD-e unfolds a toxin protein of the type II secretion system

  • Maisha Tasneem;Shipan Das Gupta;Monira Binte Momin;Kazi Modasser Hossain;Tasnim Binta Osman;Fazley Rabbi
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.7.1-7.11
    • /
    • 2023
  • The gram-positive bacterium Listeria monocytogenes is an important foodborne intracellular pathogen that is widespread in the environment. The functions of hypothetical proteins (HP) from various pathogenic bacteria have been successfully annotated using a variety of bioinformatics strategies. In this study, a HP Imo0888 (NP_464414.1) from the Listeria monocytogenes EGD-e strain was annotated using several bioinformatics tools. Various techniques, including CELLO, PSORTb, and SOSUIGramN, identified the candidate protein as cytoplasmic. Domain and motif analysis revealed that the target protein is a PemK/MazF-like toxin protein of the type II toxin-antitoxin system (TAS) which was consistent with BLASTp analysis. Through secondary structure analysis, we found the random coil to be the most frequent. The Alpha Fold 2 Protein Structure Prediction Database was used to determine the three-dimensional (3D) structure of the HP using the template structure of a type II TAS PemK/MazF family toxin protein (DB ID_AFDB: A0A4B9HQB9) with 99.1% sequence identity. Various quality evaluation tools, such as PROCHECK, ERRAT, Verify 3D, and QMEAN were used to validate the 3D structure. Following the YASARA energy minimization method, the target protein's 3D structure became more stable. The active site of the developed 3D structure was determined by the CASTp server. Most pathogens that harbor TAS create a crucial risk to human health. Our aim to annotate the HP Imo088 found in Listeria could offer a chance to understand bacterial pathogenicity and identify a number of potential targets for drug development.

A Study of Flexible Protein Structure Alignment Using Three Dimensional Local Similarities (단백질 3차원 구조의 지역적 유사성을 이용한 Flexible 단백질 구조 정렬에 관한 연구)

  • Park, Chan-Yong;Hwang, Chi-Jung
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.359-366
    • /
    • 2009
  • Analysis of 3-dimensional (3D) protein structure plays an important role of structural bioinformatics. The protein structure alignment is the main subjects of the structural bioinformatics and the most fundamental problem. Protein Structures are flexible and undergo structural changes as part of their function, and most existing protein structure comparison methods treat them as rigid bodies, which may lead to incorrect alignment. We present a new method that carries out the flexible structure alignment by means of finding SSPs(Similar Substructure Pairs) and flexible points of the protein. In order to find SSPs, we encode the coordinates of atoms in the backbone of protein into RDA(Relative Direction Angle) using local similarity of protein structure. We connect the SSPs with Floyd-Warshall algorithm and make compatible SSPs. We compare the two compatible SSPs and find optimal flexible point in the protein. On our well defined performance experiment, 68 benchmark data set is used and our method is better than three widely used methods (DALI, CE, FATCAT) in terms of alignment accuracy.

On the Crystal Structure of a human Cell Division Cycle Controlling Protein Kinase(CDK2) and Structure-Based Drug Design

  • Kim, Sung-Hou-
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.41-49
    • /
    • 1994
  • The most common conventional method of discovering a drug involves a massive screening of a large number of compounds in chemical libraries or in the extracts from natural sources such as plants or microbial broths followed by chemical modification of one or more active compounds to improve their properties as a drug. When the three-dimensional structure of the target molecule for which the drug is searched is known the drug discovery process can be significantly simplified, This is especially true when the three-dimensional structure of a complex between the target and a lead compound is known. In this lecture our experience on the structure-based drug design for human CDK2(cyclin-dependent protein kinase 2) will be discussed with special emphasis on the strength and weakness of this approach of drug discovery. The regulation of the activity of CDK2 plays an important role in the cell proliferation of normal and cancer cells.

  • PDF

Structure-based Functional Discovery of Proteins: Structural Proteomics

  • Jung, Jin-Won;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • The discovery of biochemical and cellular functions of unannotated gene products begins with a database search of proteins with structure/sequence homologues based on known genes. Very recently, a number of frontier groups in structural biology proposed a new paradigm to predict biological functions of an unknown protein on the basis of its three-dimensional structure on a genomic scale. Structural proteomics (genomics), a research area for structure-based functional discovery, aims to complete the protein-folding universe of all gene products in a cell. It would lead us to a complete understanding of a living organism from protein structure. Two major complementary experimental techniques, X-ray crystallography and NMR spectroscopy, combined with recently developed high throughput methods have played a central role in structural proteomics research; however, an integration of these methodologies together with comparative modeling and electron microscopy would speed up the goal for completing a full dictionary of protein folding space in the near future.

Mining Structure Elements from RNA Structure Data, and Visualizing Structure Elements

  • Lim, Dae-Ho;Han, Kyung-Sook
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.268-274
    • /
    • 2003
  • Most currently known molecular structures were determined by X-ray crystallography or Nuclear Magnetic Resonance (NMR). These methods generate a large amount of structure data, even far small molecules, and consist mainly of three-dimensional atomic coordinates. These are useful for analyzing molecular structure, but structure elements at higher level are also needed for a complete understanding of structure, and especially for structure prediction. Computational approaches exist for identifying secondary structural elements in proteins from atomic coordinates. However, similar methods have not been developed for RNA due in part to the very small amount of structure data so far available, and extracting the structural elements of RNA requires substantial manual work. Since the number of three-dimensional RNA structures is increasing, a more systematic and automated method is needed. We have developed a set of algorithms for recognizing secondary and tertiary structural elements in RNA molecules and in the protein-RNA structures in protein data banks (PDB). The present work represents the first attempt at extracting RNA structure elements from atomic coordinates in structure databases. The regularities in the structure elements revealed by the algorithms should provide useful information for predicting the structure of RNA molecules bound to proteins.

  • PDF

Solution Structure and Backbone Dynamics of the Biotinylation Domain of Helicobacter pylori Biotin-carboxyl Carrier Protein

  • Jung, Jin-Won;Lee, Chul-Jin;Jeon, Young-Ho;Cheong, Chae-Joon;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.347-351
    • /
    • 2008
  • Acetyl-CoA carboxylase (ACC) is an excellent candidate for antibiotics drug target, which mediates malonyl-CoA synthesis from acetyl-CoA through acetylation process. It is also involved in the committed step of fatty acid synthesis which is essential for living organisms. We have determined the three dimensional structure of C terminal domain of HP0371, biotin-carboxyl carrier protein of H. pyroli, in solution state using heteronuclear multi-dimensional NMR spectroscopy. The structure of HP0371 shows a flatten b-sheet fold which is similar with that of E. coli. However, the sequence and structure of protruding thumb are different with that of E. coli and the thumb shows different basis of structural rigidity based on backbone dynamics data.

Three-Dimensional Self-Assembly of Gold Nanoparticles Using a Virus Scaffold

  • Kang, Aeyeon;Lee, Young-Mi;Kang, Hyo Jin;Chung, Sang Jeon;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.651-651
    • /
    • 2013
  • Templated strategy is a very powerful tool for creating multi-dimensional self assembly of nanomaterials. Since viral protein cages have a uniform size with a well-defined structure, they can serve as an excellent template for the formation of a three-dimensional self-assembly of synthetic nanoparticles. In this study, we have examined the feasibility of the 3D self-assembly of gold nanoparticles of various sizes using a brome mosaic virus (BMV) capsid with cysteine groups expressed on its surface as a scaffold for the assembly. It was found that the three-dimensional clusters of gold nanoparticles with a designed structure were attainable by this approach, which was verified by transmission electron microscope (TEM) and dynamic light scattering (DLS) analysis.

  • PDF

Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes

  • Lee, Ju-Ho;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2508-2512
    • /
    • 2012
  • Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a ${\beta}$-barrel structure, which includes antiparallel ${\beta}$ strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar ${\beta}$ sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.