• 제목/요약/키워드: Protein Kinase C

검색결과 1,451건 처리시간 0.032초

Synergistic Increase of BDNF Release from Rat Primary Cortical Neuron by Combination of Several Medicinal Plant-Derived Compounds

  • Jeon, Se-Jin;Bak, Hae-Rang;Seo, Jung-Eun;Kwon, Kyung-Ja;Kang, Young-Sun;Kim, Hee-Jin;Cheong, Jae-Hoon;Ryu, Jong-Hoon;Ko, Kwang-Ho;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • 제18권1호
    • /
    • pp.39-47
    • /
    • 2010
  • Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor involved in neuronal differentiation, plasticity, survival and regeneration. BDNF draws massive attention mainly due to the potential as a therapeutic target in neurological diseases such as depression and Alzheimer's disease. In a primary screening for the natural compounds enhancing BDNF release from cultured rat primary cortical neuron, we found that compounds such as baicalein, tanshinone IIa, cinnamic acid, epiberberine, genistein and wogonin among many others increased BDNF release. All the compounds at $0.1{\mu}M$ of concentration barely showed stimulatory effect on BDNF induction, however, their combination (mixture 1; baicalein, tanshinone IIa and cinnamic acid, mixture 2; epiberberine, genistein and wogonin) showed synergistic increase in BDNF release as well as mRNA and protein expression. The level of BDNF expression was comparable to the maximum BDNF stimulation attainable by a positive control oroxylin A ($20{\mu}M$) without cell toxicity as determined by MTT analysis. Both mixtures synergistically increased the phosphorylation of extracellular signal-regulated kinase (ERK) as well as cAMP response element binding protein (CREB), an immediate and essential regulator of BDNF expression. Similar to these results, mixture of these compounds synergistically inhibited the up-regulation of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide treatments in rat primary astrocytes. These results suggest that the combinatorial treatment of natural compounds in lower concentration might be a useful strategy to obtain sufficient BDNF stimulation in neurological disease condition such as depression, while minimizing potential side effects and toxicity of higher concentration of a single compound.

Expression of Heat Shock Protein and Antioxidant Genes in Rice Leaf Under Heat Stress

  • Lee, Dong-Gi;Ahsan, Nagib;Kim, Yong-Goo;Kim, Kyung-Hee;Lee, Sang-Hoon;Lee, Ki-Won;Rahman, Md. Atikur;Lee, Byung-Hyun
    • 한국초지조사료학회지
    • /
    • 제33권3호
    • /
    • pp.159-166
    • /
    • 2013
  • We have previously investigated the proteome changes of rice leaves under heat stress (Lee et al. in Proteomics 2007a, 7:3369-3383), wherein a group of antioxidant proteins and heat shock proteins (HSPs) were found to be regulated differently. The present study focuses on the biochemical changes and gene expression profiles of heat shock protein and antioxidant genes in rice leaves in response to heat stress ($42^{\circ}C$) during a wide range of exposure times. The results show that hydrogen peroxide and proline contents increased significantly, suggesting an oxidative burst and osmotic imbalance under heat stress. The mRNA levels of chaperone 60, HSP70, HSP100, chloroplastic HSP26, and mitochondrial small HSP responded rapidly and showed maximum expression after 0.5 or 2 h under heat stress. Transcript levels of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and Cu-Zn superoxide dismutase (Cu-Zn SOD) showed a rapid and marked accumulation upon heat stress. While prolonged exposure to heat stress resulted in increased transcript levels of monodehydroascorbate reductase, peroxidase, glyoxalase 1, glutathione reductase, thioredoxin peroxidase, 2-Cysteine peroxiredoxin, and nucleoside diphosphate kinase 1, while the transcription of catalase was suppressed. Consistent with their changes in gene expression, the enzyme activities of APX and DHAR also increased significantly following exposure to heat stress. These results suggest that oxidative stress is usually caused by heat stress, and plants apply complex HSP- and antioxidant-mediated defense mechanisms to cope with heat stress.

Dietary Aloe Reduces Adipogenesis via the Activation of AMPK and Suppresses Obesity-related Inflammation in Obese Mice

  • Shin, Eun-Ju;Shin, Seul-Mee;Kong, Hyun-Seok;Lee, Sung-Won;Do, Seon-Gil;Jo, Tae-Hyung;Park, Young-In;Lee, Chong-Kil;Hwang, In-Kyeong;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • 제11권2호
    • /
    • pp.107-113
    • /
    • 2011
  • Background: Metabolic disorders, including type II diabetes and obesity, present major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has become the focus of a great deal of attention as a novel therapeutic target for the treatment of metabolic syndromes. In this study, we evaluated whether dietary aloe could reduce obesity-induced inflammation and adipogenesis. Methods: Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results: Aloe QDM complex downregulated fat size through suppressed expression of scavenger receptors on adipose tissue macrophages (ATMs) compared with HFD. Both white adipose tissue (WATs) and muscle exhibited increased AMPK activation through aloe supplementation, and in particular, the Aloe QDM complex. Obesity-induced inflammatory cytokines (IL-$1{\beta}$ and -6) and $HIF1{\alpha}$ mRNA and protein were decreased markedly, as was macrophage infiltration by the Aloe QDM complex. Further, the Aloe QDM complex decreased the translocation of NF-${\kappa}B$ p65 from the cytosol in the WAT. Conclusion: Dietary aloe formula reduced obesity-induced inflammatory responses by activation of AMPK in muscle and suppression of proinflammatory cytokines in the WAT. Additionally, the expression of scavenger receptors in the ATM and activation of AMPK in WAT led to reduction in the percent of body fat. Thus, we suggest that the effect of the Aloe QDM complex in the WAT and muscle are related to activation of AMPK and its use as a nutritional intervention against T2D and obesity-related inflammation.

LPS 자극 RAW 264.7 대식세포에 있어서 아로니아 열매 열수 추출물의 항염증 효과 (Anti-Inflammatory Effect of Hot Water Extract of Aronia Fruits in LPS-Stimulated RAW 264.7 Macrophages)

  • 양혜;오광훈;유영춘
    • 한국식품영양과학회지
    • /
    • 제44권1호
    • /
    • pp.7-13
    • /
    • 2015
  • 본 연구에서는 아로니아 열매 추출물(AF-H)의 항염증 활성을 조사하기 위하여 LPS 자극에 의해 유도된 RAW 264.7 macrophage의 염증반응에서 AF-H의 염증매개인자 및 염증성 사이토카인 분비 억제활성과 이에 관련된 세포 내 작용기전 해석을 수행하였다. LPS($1{\mu}g/mL$)로 RAW 264.7 세포를 24시간 자극하는 염증모델에서 세포독성을 나타내지 않는 안전한 농도의 AF-H($0{\sim}500{\mu}g/mL$)를 LPS 처리 12시간 전에 처리하여 NO 및 PGE2의 분비 억제활성을 측정하였다. 그 결과 AF-H 처리에 의해 NO와 PGE2의 생성이 처리 농도에 의존하여 유의하게 억제되었으며, 이들 염증매개인자의 생합성 효소인 iNOS 및 COX-2의 세포 내 발현도 현저하게 억제되는 것으로 관찰되었다. 또한 AF-H의 처리에 의해 염증성 사이토카인인 $TNF-{\alpha}$와 IL-6의 분비도 유의하게 억제되는 것으로 확인하였다. 이러한 AF-H에 의한 항염증 활성의 세포 내 기전을 해석하기 위하여 LPS 자극에 의해 유도되는 MAPK와 $NF-{\kappa}B$ 전사인자의 활성화에 대한 억제 효과를 조사하였다. 그 결과 AF-H는 MAPK의 인산화에는 별다른 영향을 미치지 않고 $NF-{\kappa}B$의 활성화($I{\kappa}B$ 인산화)를 효과적으로 억제하는 것으로 확인되었다. 한편 LPS에 의한 in vivo 패혈증 모델에서 AF-H에 의한 패혈증 억제활성을 측정한 결과 비록 통계학적으로 유의하지는 않으나 AF-H 투여에 의해 생존율과 50% 사망률의 연장 효과가 관찰되었다. 이들 결과를 종합해 보면 아로니아 열매 열수추출물은 $NF-{\kappa}B$의 활성화 억제를 통해 NO, PGE2, $TNF-{\alpha}$ 및 IL-6 등의 염증매개인자와 사이토카인의 생성을 억제하는 항염증 활성을 지니는 것으로 확인되었다.

LPS로 인해 활성화된 BV2 Microglia에서 발효 복합버섯-곡물 숙성균주 배양 홍삼(紅蔘)의 뇌신경염증 보호효과 (Anti-neuroinflammatory effects of cultivated red ginseng with fermented complex mushroom-cereal mycelium on lipopolysaccharide activated BV2 microglial cells)

  • 권빛나;오진영;김동욱;장미경;조준형;박성주;배기상
    • 대한본초학회지
    • /
    • 제38권1호
    • /
    • pp.11-19
    • /
    • 2023
  • Objectives : Neuroinflammation is a common pathological mechanism of neurodegenerative diseases, and the development of therapeutic agents is urgently needed. Red ginseng has been known to be good for the immune stimulation in Eastern Asia. Although the immuno-stimulatory activity of red ginseng are already known, the neuro-protective effects of cultivated red ginseng with fermented complex mushroom-cereal mycelium (RGFM) have not been conducted. Thus, in this study, we tried to investigate the anti-neuroinflammatory effect of RGFM water extract on lipopolysaccharide (LPS) stimulated BV2 cells. Methods : BV2 cells were pretreated with RGFM 1 h prior to LPS exposure. To determine the neuro-protective effects of RGFM water extract, we measured the expression of inflammatory mediators including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and nitric oxide (NO) and pro-inflammatory cytokines such as interleukin (IL)-1𝛽, IL-6 and tumor necrosis factor (TNF)-𝛼 in LPS-stimulated BV2 cells. In addition, to find out the regulatory mechanism of RGFM water extract, we assessed the protein levels of mitogen-activated protein kinases (MAPKs) and inhibitory 𝜅B𝛼 (I𝜅B𝛼) by western blotting. Results : In our study, treatment of RGFM reduced the mRNA expression of iNOS and COX-2 and suppressed NO production in LPS-stimulated BV2 cells. Additionally, the secretion of IL-1𝛽 and TNF-𝛼 but not IL-6 was significantly inhibited by RGFM. Furthermore, RGFM water extract inhibited the phosphorylation of c-Jun N-terminal kinase (JNK). Conclusions : Taken together, these findings suggest that RGFM water extract has a protective effect on neuroinflammation through inhibition of JNK.

LPS로 유도한 RAW 264.7 세포의 염증반응에서 자초(紫草)의 항염증 효과 (The anti-inflammatory effect of Lithospermum Erythrorhizon on lipopolysaccharide - induced inflammatory response in RAW 264.7 cells)

  • 최선복;배기상;조일주;박경철;서승희;김동구;신준연;곽태신;이정현;이금산;박성주;송호준
    • 대한본초학회지
    • /
    • 제28권2호
    • /
    • pp.67-73
    • /
    • 2013
  • Objective : Lithospermum Erythrorhizon (LE) has been used as an anti-bacterial and anti-inflammatory agent. However, it is unclear that LE aqueous extract could show the anti-inflammatory effects in RAW 264.7cells. The purpose of this study was to investigate the anti-inflammatory effect of aqueous extract from LE on lipopolysaccharide (LPS) - induced inflammatory response. Methods : To measure out the cytotoxicity of LE, we performed the MTT assay. To evaluate the anti-inflammatory effects of LE, we examined the inflammatory mediators such as nitric oxide (NO), prostaglandin E2 ($PGE_2$) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-${\alpha}$, interleukin, (IL)-$1{\beta}$ and (IL)-6) on RAW 264.7 cells. We also examined molecular mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor-B (NF-${\kappa}B$) activation by western blot. Results : Aqueous Extract from LE itself did not have any cytotoxic effect in RAW 264.7 cells. Aqueous extract from LE inhibited LPS-induced productions of inflammatory mediators such as NO, $PGE_2$, and pro-inflammatory cytokines including TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 in RAW 264.7cells. In addition, LE inhibited the phosphorylation of p38 kinases (p38), c-Jun $NH_2$-terminal kinase (JNK), and NF-${\kappa}B$ activation in RAW 264.7 cells. Conclusion : LE down-regulated LPS-induced production of inflammatory mediators through the inhibition of p38, JNK and NF-${\kappa}B$ activation. Taken together, these results could provide the evidence for the anti-inflammatory effects of LE. Therefore, LE may be a novel target in the management of inflammation and help to support a potential strategy for prevention and therapy of inflammatory diseases.

LPS로 자극한 RAW 264.7 세포에서 염증성세포활성물질 생산에 미치는 도적산(導赤散) 물 추출의 억제 효과 (Inhibitory Effect of Water Extract from Dojuksan on LPS-induced Proinflammatory Cytokines Production in RAW 264.7 Cells)

  • 김지은;김성배;강옥화;신인식;강석훈;이승호;권동렬
    • 대한본초학회지
    • /
    • 제28권3호
    • /
    • pp.53-60
    • /
    • 2013
  • Objectives : DojukSan is known to be effective for treating a urinary diseases and stomatitis. However, there has been a lack of studies regarding the effects of Dojuksan on the inflammatory activities and effector inflammatory disease mechanism about macrophage before is not known. To elucidate the molecular mechanisms of Dojuksan water extract (DJS) on pharmacological and biochemical actions in inflammation, we examined the effect of DJS on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophages. Methods : In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay, reverse transcription polymerase chain reaction, and western blot analysis to measure the activation of MAPKs. Cells were treated with 200 ng/mL of LPS 1 h prior to the addition of DJS. Cell viability was measured by MTS assay. The investigation focused on whether DJS inhibited nitric oxide (NO) and prostaglandin E2 ($PGE_2$) productions, as well as the expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells. Results : We found that DJS inhibited LPS-induced NO, $PGE_2$ and IL-6 productions as well as the expressions of iNOS and COX-2. Furthermore, DJS suppressed the LPS-induced phosphorylation of p38 MAPK and c-Jun NH2-protein kinase (JNK). Conclusions : These results suggest that DJS has inhibitory effects on LPS-induced $PGE_2$, NO, and IL-6 production, as well as the expressions of iNOS and COX-2 in the murine macrophage. These inhibitory effects occur through blockades on the MAPKs phosphorylation.

급성 알코올 투여 백서의 신문혈 자극이 소교세포 활성에 미치는 영향 (Suppression of Microglial Activation by Acute Ethanol Administration through HT7 Stimulation)

  • 서수연;방세권;강석윤;조성진;최광호;류연희
    • Korean Journal of Acupuncture
    • /
    • 제41권2호
    • /
    • pp.33-42
    • /
    • 2024
  • Objectives : The sigma-1 receptor is implicated in stress, depression, psychostimulant sensitization, and addiction vulnerability. Prior studies have indicated that ethanol exposure modulates sigma-1 receptor activity within the Ventral Tegmental Area (VTA). Here, we explore the sub-mechanisms underlying sigma-1 receptor activity induced by HT7 (Shinmun) stimulation in behavioral alterations following acute ethanol (ETOH) administration. Methods : Male Wistar rats were investigated for pro- and anti-inflammatory markers after injection of ETOH (1 g/kg) using cytokine enzyme-linked immunosorbent assay (ELISA)s. After confirming that HT7 stimulation changed the total distance traveled in the open field test (OFT), protein changes in the Ventral tegmental area (VTA) were measured by Western blotting. The expression level of inducible nitric oxide synthase (iNOS) after administration of a sigma-1 receptor antagonist (dihydrobromide 1047; BD1047, 10 mg/kg i.p.) and Shenmen (HT7) stimulation was compared. Results : As a result, acute ETOH administration increased proinflammatory marker levels (TNF-𝛼 and IL-6). HT7 stimulation restored the total distance response after acute ethanol administration. In addition, in the VTA, the levels of a microglial marker (iNOS), sigma-1 receptor and protein kinase C, which are predicted to be involved in up- and downregulation, were restored by HT7 stimulation. In particular, HT7 stimulation modulates iNOS expression through effects similar to BD treatment. This study suggests that the stimulatory effect of HT7 may be driven by microglial activation. Conclusions : Microglial activity is regulated by sigma-1 receptor, and sigma-1 receptor activity is regulated by HT7 stimulation. Significantly, we demonstrate that HT7 stimulation ameliorates behavioral alterations induced by acute ETOH administration through microglial activation within the VTA.

Cannabidiol Promotes Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in the Inflammatory Microenvironment via the CB2-dependent p38 MAPK Signaling Pathway

  • Lin Li;Jin Feng;Lei Sun;Yao-wei Xuan;Li Wen;Yun-xia Li;Shuo Yang;Biao Zhu;Xiao-yu Tian;Shuang Li;Li-sheng Zhao;Rui-jie Dang;Ting Jiao;Hai-song Zhang;Ning Wen
    • International Journal of Stem Cells
    • /
    • 제15권4호
    • /
    • pp.405-414
    • /
    • 2022
  • Background and Objectives: Chronic inflammation of bone tissue often results in bone defects and hazards to tissue repair and regeneration. Cannabidiol (CBD) is a natural cannabinoid with multiple biological activities, including anti-inflammatory and osteogenic potential. This study aimed to investigate the efficacy and mechanisms of CBD in the promotion of bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation in the inflammatory microenvironment. Methods and Results: BMSCs isolated from C57BL/6 mice, expressed stem cell characteristic surface markers and presented multidirectional differentiation potential. The CCK-8 assay was applied to evaluate the effects of CBD on BMSCs' vitality, and demonstrating the safety of CBD on BMSCs. Then, BMSCs were stimulated with lipopolysaccharide (LPS) to induce inflammatory microenvironment. We found that CBD intervention down-regulated mRNA expression levels of inflammatory cytokines and promoted cells proliferation in LPS-treated BMSCs, also reversed the protein and mRNA levels downregulation of osteogenic markers caused by LPS treatment. Moreover, CBD intervention activated the cannabinoid receptor 2 (CB2) and the p38 mitogen-activated protein kinase (MAPK) signaling pathway. While AM630, a selective CB2 inhibitor, reduced phosphorylated (p)-p38 levels. In addition, AM630 and SB530689, a selective p38 MAPK inhibitor, attenuated the enhancement of osteogenic markers expression levels by CBD in inflammatory microenvironment, respectively. Conclusions: CBD promoted osteogenic differentiation of BMSCs via the CB2/p38 MAPK signaling pathway in the inflammatory microenvironment.

Development of screening systems for modulators on phospholipase-mediated signal transduction

  • Lee, Young-Han-;Min, Do-Sik;Kim, Jae-Ho-;Suh, Pann-Ghill;Ryu, Sung-Ho
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.186-186
    • /
    • 1994
  • Many agonists have been known to activate the hydrolysis of membrane phospholipids through the bindings with corresponding receptors on the various cells. Diacylglycerol and inositol 1,4,5-trisphosphate(IP3) generated by the action of phosphoinositide-specific phospholipase C (PI-PLC) are well known second messengers for the activation of protein kinase C and the mobilization of Ca2+ in many cells. Three types of PI-PLC isozyme (${\alpha}$,${\gamma}$, and $\delta$) and several subtrpes for each type have been identified from mammalian sources by purification of enzymes and cloning of their cDNAs. Each type PI-PLC isozyme is coupled to different receptors and mediators, for example, ${\beta}$-types are coupled to the seven-transmembrane-receptors via Gq family of G-proteins and ${\beta}$-types directly to the receptor tyrosine kinases. Specific modulators for the signaling pathway through each type of PI-PLC should be very useful as potential potential candidates for lend substances in developing novel drugs. To establish the sensitive and convenient screening systems for searching modulators on PI-PLC mediated signaling, two kinds of approaches have been tried. (1) Establishment of in vitro assay condition for each type of PI-PLC isozyme: Overexpression by using vaccinia virus and purification of each isozyme was carried out for the preparation of large amounts of enaymes. Optimum and sensitive assay condition for the measurements of PI-ELC activities were established. (2) Development of the cell lines in which each type of PI-PLC is permanently overexpressed: A fibroblast cell line (3T3${\gamma}$1-7) in which PI-PLC-${\gamma}$1 was overexpressed by using pZip-neo expression vector was developed and used for the measurement of PDGF-induced IP3 formation. The responses for IP3 formed in 3T3${\gamma}$1-7 cells by the treatment of PDGF is 8 times more sensitive than those in control cells. 3T3${\gamma}$l-7 cell is useful for the screening of the inhibitors on the PDGF-induced cellular responses from large number of samples in a small volume(50 ${\mu}$l) and short time(5-15 min). Using these systems, we screened hundreds of herb-extracts for the inhibition of PDGF-induced IP3 formation and selected several extracts that showed the inhibition as the candidates for isolation and characterization of active substances. The determination of the acting point of selected extracts or fractions in the PDGF signaling pathway has been analyzing.

  • PDF