• Title/Summary/Keyword: Protein Informatics

Search Result 276, Processing Time 0.12 seconds

Spike protein D614G and RdRp P323L: the SARS-CoV-2 mutations associated with severity of COVID-19

  • Biswas, Subrata K.;Mudi, Sonchita R.
    • Genomics & Informatics
    • /
    • 제18권4호
    • /
    • pp.44.1-44.7
    • /
    • 2020
  • The severity of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), greatly varies from patient to patient. In the present study, we explored and compared mutation profiles of SARS-CoV-2 isolated from mildly affected and severely affected COVID-19 patients in order to explore any relationship between mutation profile and disease severity. Genomic sequences of SARS-CoV-2 were downloaded from Global Initiative on Sharing Avian Influenza Data (GISAID) database. With the help of Genome Detective Coronavirus Typing Tool, genomic sequences were aligned with the Wuhan seafood market pneumonia virus reference sequence and all the mutations were identified. Distribution of mutant variants was then compared between mildly and severely affected groups. Among the numerous mutations detected, 14408C>T and 23403A>G mutations resulting in RNA-dependent RNA polymerase (RdRp) P323L and spike protein D614G mutations, respectively, were found predominantly in severely affected group (>82%) compared with mildly affected group (<46%, p < 0.001). The 241C>T mutation in the non-coding region of the genome was also found predominantly in severely affected group (p < 0.001). The 3037C>T, a silent mutation, also appeared in relatively high frequency in severely affected group compared with mildly affected group, but the difference was not statistically significant (p = 0.06). We concluded that spike protein D614G and RdRp P323L mutations in SARS-CoV-2 are associated with severity of COVID-19. Further studies will be required to explore whether these mutations have any impact on the severity of disease.

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction

  • Zhang, Lijun;Park, Jeoung Yun;Zhao, Dong;Kwon, Hak Cheol;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.615-629
    • /
    • 2021
  • An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.

Microsecond molecular dynamics simulations revealed the inhibitory potency of amiloride analogs against SARS-CoV-2 E viroporin

  • Jaber, Abdullah All;Chowdhury, Zeshan Mahmud;Bhattacharjee, Arittra;Mourin, Muntahi;Keya, Chaman Ara;Bhuyan, Zaied Ahmed
    • Genomics & Informatics
    • /
    • 제19권4호
    • /
    • pp.48.1-48.10
    • /
    • 2021
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics simulation for 1 ㎲ (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.

Insight from sirtuins interactome: topological prominence and multifaceted roles of SIRT1 in modulating immunity, aging, and cancer

  • Nur Diyana Zulkifli;Nurulisa Zulkifle
    • Genomics & Informatics
    • /
    • 제21권2호
    • /
    • pp.23.1-23.9
    • /
    • 2023
  • The mammalian sirtuin family, consisting of SIRT1-SIRT7, plays a vital role in various biological processes, including cancer, diabetes, neurodegeneration, cardiovascular disease, cellular metabolism, and cellular homeostasis maintenance. Due to their involvement in these biological processes, modulating sirtuin activity seems promising to impact immuneand aging-related diseases, as well as cancer pathways. However, more understanding is required regarding the safety and efficacy of sirtuin-targeted therapies due to the complex regulatory mechanisms that govern their activity, particularly in the context of multiple targets. In this study, the interaction landscape of the sirtuin family was analyzed using a systems biology approach. A sirtuin protein-protein interaction network was built using the Cytoscape platform and analyzed using the NetworkAnalyzer and stringApp plugins. The result revealed the sirtuin family's association with numerous proteins that play diverse roles, suggesting a complex interplay between sirtuins and other proteins. Based on network topological and functional analysis, SIRT1 was identified as the most prominent among sirtuin family members, demonstrating that 25 of its protein partners are involved in cancer, 22 in innate immune response, and 29 in aging, with some being linked to a combination of two or more pathways. This study lays the foundation for the development of novel therapies that can target sirtuins with precision and efficacy. By illustrating the various interactions among the proteins in the sirtuin family, we have revealed the multifaceted roles of SIRT1 and provided a framework for their possible roles to be precisely understood, manipulated, and translated into therapeutics in the future.

Molecular Analysis of Alternative Transcripts of the Equine Cordon-Bleu WH2 Repeat Protein-Like 1 (COBLL1) Gene

  • Park, Jeong-Woong;Jang, Hyun-Jun;Shin, Sangsu;Cho, Hyun-Woo;Choi, Jae-Young;Kim, Nam-Young;Lee, Hak-Kyo;Do, Kyong-Tak;Song, Ki-Duk;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권6호
    • /
    • pp.870-875
    • /
    • 2015
  • The purpose of this study was to investigate the alternative splicing in equine cordon-bleu WH2 repeat protein-like 1 (COBLL1) gene that was identified in horse muscle and blood leukocytes, and to predict functional consequences of alternative splicing by bioinformatics analysis. In a previous study, RNA-seq analysis predicted the presence of alternative spliced isoforms of equine COBLL1, namely COBLL1a as a long form and COBLL1b as a short form. In this study, we validated two isoforms of COBLL1 transcripts in horse tissues by the real-time polymerase chain reaction, and cloned them for Sanger sequencing. The sequencing results showed that the alternative splicing occurs at exon 9. Prediction of protein structure of these isoforms revealed three putative phosphorylation sites at the amino acid sequences encoded in exon 9, which is deleted in COBLL1b. In expression analysis, it was found that COBLL1b was expressed ubiquitously and equivalently in all the analyzed tissues, whereas COBLL1a showed strong expression in kidney, spinal cord and lung, moderate expression in heart and skeletal muscle, and low expression in thyroid and colon. In muscle, both COBLL1a and COBLL1b expression decreased after exercise. It is assumed that the regulation of COBLL1 expression may be important for regulating glucose level or switching of energy source, possibly through an insulin signaling pathway, in muscle after exercise. Further study is warranted to reveal the functional importance of COBLL1 on athletic performance in race horses.

H9 Inhibits Tumor Growth and Induces Apoptosis via Intrinsic and Extrinsic Signaling Pathway in Human Non-Small Cell Lung Cancer Xenografts

  • Kim, Min-Je;Kwon, Sae-Bom;Ham, Seung Hoon;Jeong, Eui-Suk;Choi, Yang-Kyu;Choi, Kang Duk;Hong, Jin Tae;Jung, Seung Hyun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.648-657
    • /
    • 2015
  • H9, a novel herbal extract, demonstrated cytotoxicity in A549 non-small cell lung cancer (NSCLC) cell lines. In this study, we investigated whether H9, and/or co-treatment with an anticancer drug, pemetrexed (PEM), inhibited tumor growth in BALB/c nude mice models bearing A549 NSCLC cells. The mice were separated into groups and administered H9 and PEM for 2 weeks. Protein and mRNA levels were detected using western blotting and reverse transcription polymerase chain reaction, respectively; immunohistochemistry (IHC) was also performed on the tumor tissues. H9 and co-treatment with PEM induced the cleavage of proapoptotic factors, such as caspase-3, caspase-8, caspase-9, and poly(ADP)-ribose polymerase (PARP). Expression levels of cell-death receptors involving Fas/FasL, TNF-related apoptosisinducing ligands (TRAIL), and TRAIL receptors were increased by H9 and co-treatment with PEM. Furthermore, analysis of levels of cell-cycle modulating proteins indicated that tumor cells were arrested in the G1/S phase. In addition, the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt survival signaling pathways were inhibited by H9 and co-treatment with PEM. In conclusion, H9 and co-treatment with PEM inhibited tumor growth in BALB/c nude mice models bearing A549 NSCLC cells. These results indicate that H9 and co-treatment with PEM can be used as an anticancer therapy in NSCLC.

Inhibition of Helicobacter pylori Adhesion by Acidic Polysaccharide Isolated from Artemisia capillaris

  • Woo, Jeung-S.;Ha, Byung-H.;Kim, Tae-G.;Lim, Yoon-Gho;Kim, Kyung-H.
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.853-858
    • /
    • 2003
  • Helicobacter pylori specifically adhere to host cells through a number of putative receptors and ligands, mainly based on carbohydrate-protein interactions. Polysaccharide fractions isolated from the leaves of Artemisia capillaris showed different inhibitory activities against H. pylori adhesion by using hemagglutination assay. Among these fractions, an acidic polysaccharide fraction FlA showed highly effective inhibitory activity, and its minimum inhibition concentration was 0.63 mg/ml. The inhibition results by the hemagglutination assay were consistent with those obtained by the enzymelinked glycosorbent assay, which was developed by the conjugation of horseradish peroxidase with fetuin, a sialic acid-containing glycoprotein which was specific to H. pylori adhesion. FlA contained the highest carbohydrate content among polysaccharide fractions, and no protein was detectable when further purified by gel filtration FPLC. Sugar composition analysis using GC revealed the highest amount of galacturonic acid among sugars, which suggests that FlA contains essentially acidic polysaccharides. Our data suggest that acidic polysaccharides may play an important role in the inhibition of H. pylori adhesion to host cells.

Systems Biological Approaches Reveal Non-additive Responses and Multiple Crosstalk Mechanisms between TLR and GPCR Signaling

  • Krishnan, Jayalakshmi;Choi, Sang-Dun
    • Genomics & Informatics
    • /
    • 제10권3호
    • /
    • pp.153-166
    • /
    • 2012
  • A variety of ligands differ in their capacity to bind the receptor, elicit gene expression, and modulate physiological responses. Such receptors include Toll-like receptors (TLRs), which recognize various patterns of pathogens and lead to primary innate immune activation against invaders, and G-protein coupled receptors (GPCRs), whose interaction with their cognate ligands activates heterotrimeric G proteins and regulates specific downstream effectors, including immuno-stimulating molecules. Once TLRs are activated, they lead to the expression of hundreds of genes together and bridge the arm of innate and adaptive immune responses. We characterized the gene expression profile of Toll-like receptor 4 (TLR4) in RAW 264.7 cells when it bound with its ligand, 2-keto-3-deoxyoctonate (KDO), the active part of lipopolysaccharide. In addition, to determine the network communications among the TLR, Janus kinase (JAK)/signal transducer and activator of transcription (STAT), and GPCR, we tested RAW 264.7 cells with KDO, interferon-${\beta}$, or cAMP analog 8-Br. The ligands were also administered as a pair of double and triple combinations.

In silico approach to calculate the transcript capacity

  • Lee, Young-Sup;Won, Kyung-Hye;Oh, Jae-Don;Shin, Donghyun
    • Genomics & Informatics
    • /
    • 제17권3호
    • /
    • pp.31.1-31.7
    • /
    • 2019
  • We sought the novel concept, transcript capacity (TC) and analyzed TC. Our approach to estimate TC was through an in silico method. TC refers to the capacity that a transcript exerts in a cell as enzyme or protein function after translation. We used the genome-wide association study (GWAS) beta effect and transcription level in RNA-sequencing to estimate TC. The trait was body fat percent and the transcript reads were obtained from the human protein atlas. The assumption was that the GWAS beta effect is the gene's effect and TC was related to the corresponding gene effect and transcript reads. Further, we surveyed gene ontology (GO) in the highest TC and the lowest TC genes. The most frequent GOs with the highest TC were neuronal-related and cell projection organization related. The most frequent GOs with the lowest TC were wound-healing related and embryo development related. We expect that our analysis contributes to estimating TC in the diverse species and playing a benevolent role to the new bioinformatic analysis.

GenScan을 이용한 진핵생물의 서열 패턴 분석 (Anlaysis of Eukaryotic Sequence Pattern using GenScan)

  • 정용규;임이슬;차병헌
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.113-118
    • /
    • 2011
  • 서열 상동성 분석은 생명현상에 관여하는 물질을 정렬, 색인하여 데이터베이스 하는 것으로, 생명정보학의 유용성을 입증하는 분야이다. 본 논문에서는 구조가 복잡한 진핵생물의 서열 패턴을 단백질 서열로 변환하기 위해 은닉마르코프모델을 이용하는 GenScan 프로그램을 이용한다. 서열상동성 분석 중 최소거리 탐색 문제는 문제의 크기가 커지면 계산량이 기하급수적으로 증가하여 정확한 계산이 불가능해진다. 따라서 유사한 아미노산간의 치환과 상이한 아미노산간의 치환 점수를 차등화한 점수표를 적용하고, 은닉마르코프모델 등을 적용해 정교한 전이 확률모델을 적용한다. 변환된 서열을 서열 상동성 분석을 위해 사용되는 blast p를 이용하여, 은닉 마르코프 모델을 도입함으로 인해 단백질 구조 서열로 변환하는 데에 있어서 우수한 기능을 제공함을 알 수 있다.