• Title/Summary/Keyword: Protein Hydrolysate

Search Result 257, Processing Time 0.027 seconds

Characteristics of Soybean Hydrolysates Prepared with Various Protease (단백질 분해효소 종류에 따른 콩 가수분해물의 특성)

  • Jeong, Kyu-Ho Jeong;Seo, Ji-Hyung;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.12 no.5
    • /
    • pp.460-464
    • /
    • 2005
  • In order to produce functional soy hydrolysates, we investigated the characteristics of soy hydrolysates prepared with 4 kinds of commercial proteases. The yield was high in protease(B), in which 43.2% soy flour and 61.6% SPI were obtained. The solubility and the contents of total phenolic compound were greatly increased by the treatment of protease(B) along with protease(C). The calcium intolerance was improved after the protease(B) treatment in soy flour or Soybean Protein isolate (SPI). Consideration for the physicochemical characteristics including yield, protease(B) has potential application for the production of soy hydrolysates. After the protease treatment, the beany flavor of soy flour became weak and the bitter taste was strong in both soy flour and SPI. However, there was no difference of beany flavor and bitter taste among delete protease hydrolysates. Nevertheless, further modifications and improvements to the sensory characteristics would be required for the development of a range of products with the hydrolysate.

Studies on the Nutrition of Amino Acids and Vitamins in Undaria pinnatifida (Harvey) Suringar (미역의 아미노酸 및 비타민에 對한 營養學的 硏究)

  • Lee, Hyun-Ki
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.201-210
    • /
    • 1965
  • Leuconostoc mesenteroides P-60, Lactobacillus arabinosus 17-5, Streptococcus faecalis R have been successfully used for the quantitative determination of sixteen amino acids in Undaria pinnatifida (Harvey) Suringar hydrolysate by alkaline and hydrolysis for succesive two hours from two to twelve hours, by means of microbiological assay. And thiamine and riboflavin were fluorometrically determinated by thiochrome and lumiflavin in powder (80mesh) of Undaria pinnatifida (Harvey) Suringar. The results were as follows: 1) Arginine contents was the highest in hydrolysate for two hours, but longer the hydrolysis, the more content Undaria pinnatifida was decreased. 2) The adequate contents of other amino acids were obtained by hydrolysis for six hours. 3) Growth check and improve of Lactobacillus were not identified in determination by microbiological assay for Undaria pinnatifida. 4) The following values were obtained in Undaria pinnatifida hydrolysate six hours: asparatic acid 466, arginine 230, lysine 317, histidine 74, isoleucine 242, methionine 202, phenylalanine 256, proline 231, threonine 231, tyrosine 161, valine 415, glycine 302, leucine 414, glutamic acid 625, cystine (5 hrs.) 53 and tryptophan (8 hrs.) 90mg per nitrogen one gram. 5) Protein score was 81 (limiting factor was isoleucine) and essential amino acids pattern was of satisfactory results. And methionine contained was higher than FAO value or milk value. 6) Sulphur contained amino acids (methionine plus cystine) contained in Undaria pinnatifida were 225mg/N-g. That was satisfactory results. 7) Absorption spectrum of wave length were not different 1% HAc from buffer-sol. (pH 6.8) in dilution for determination of riboflavin. Both methods might be suitable. 8) Thiamine and riboflavin contained in Undaria pinnatifida were ($B_1,\;82.51{\pm}1.1){\gamma}/N-g\;and\;(B_2,\;115.29{\pm}1.5){\gamma}/N-g.$.

  • PDF

Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

  • Jeewanthi, Renda Kankanamge Chaturika;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.35 no.3
    • /
    • pp.350-359
    • /
    • 2015
  • This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application.

Bitterness and Solubility of Soy Protein, Casein, Gluten, and Gelatin Hydrolysates Treated with Various Enzymes (효소종류에 따른 대두단백, 카제인, 글루텐, 젤라틴 단백질 가수분해물의 쓴맛과 용해도 특성)

  • Kim, Mi-Ryung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.4
    • /
    • pp.587-594
    • /
    • 2010
  • To develop commercially available food protein hydrolysates, the effects of different types of enzymes and substrates on bitterness and solubility of partially hydrolyzed food proteins were investigated. Four types of proteins (casein, isolated soy protein (ISP), wheat gluten, and gelatin) and five types of proteolytic enzymes (a microbial alkaline protease (alcalase), a microbial neutral protease (neutrase), papain, bromelain, trypsin) were used. To profile the pattern of hydrolysis, the degree of hydrolysis (DH) were monitored during 180 min of reaction time by pH-stat method. Casein showed the highest susceptibility to hydrolysis for all five proteases compared to those of ISP, gluten, and gelatin. In addition, the bitter intensity and solubility (nitrogen soluble index, NSI) of each protein hydrolysate were compared at DH 10%. Bitterness and solubility of protein hydrolysates were highly affected by DH and the types of enzymes and substrates. At DH=10%, casein hydrolysate by trypsin, ISP and gluten hydrolysates by either bromelain or neutrase, and gelatin hydrolysates by the five proteases tested in this study were highly soluble and less bitter.

Enzymatic preparation and antioxidant activities of protein hydrolysates from Gryllus bimaculatus (쌍별귀뚜라미 단백가수분해물의 제조 및 항산화 활성)

  • Cho, Hye-Rin;Lee, Yoo-Jung;Hong, Ji-Eun;Lee, Syng-Ook
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.473-479
    • /
    • 2019
  • Gryllus bimaculatus (GB) has recently been registered as a food variety in Korea. In the present study, we prepared protein hydrolysates from GB and evaluated their antioxidant capacity. Protein hydrolysates were prepared from dried GB using enzymatic hydrolysis using five different proteases, and protein hydrolysates showing high hydrolysis value (alcalase, flavourzyme, and neutrase) were separated further into fractions ${\leq}3kDa$ and then lyophilized. Based on $RC_{50}$ values of hydrolysates (${\leq}3kDa$) obtained from four different antioxidant analyses, the flavourzyme hydrolysates showed relatively high levels of antioxidant capacity among the three hydrolysates, and in particular, it showed considerably strong antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. The flavourzyme hydrolysate also significantly inhibited peroxidation of linoleic acid. These results suggest that protein hydrolysates from GB represent potential sources of natural antioxidants. Our current studies are focused on identification of active peptides from the flavourzyme hydrolysate.

가금부산물인 닭 용골연골로부터 chondroitin sulfate를 포함하는 뮤코다당단백질의 추출에 관한 연구

  • 신승철;김동욱;김관응;안승민;유선종;김성권;안병기;강창원
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.26-27
    • /
    • 2004
  • This study was conducted to evaluate the value of chicken keel cartilage as a source of mucopoly-saccharide-protein containing chondroitin sulfate (CS) and to find the optimum extraction conditions. The hot water extraction and alcalase hydrolysis methods were performed for extraction mucopolysaccharide in lyophilized chicken keel cartilage. The most efficient condition was hydrolysis with 2 % alcalase in 10 volumes of distilled water for 120 min. The yield of hydrolysate and CS content were 75.87 % and 25.61 %, respectively. For further separation of CS from hydrolysate by alcalase, ethanol precipitation was performed. The yield of ethanol precipitate and its CS content were 21.41 % and 46.31 %, respectively.

  • PDF

Angiotensin I-converting Enzyme Inhibitory Activities of Porcine Skeletal Muscle Proteins Following Enzyme Digestion

  • Katayama, K.;Fuchu, H.;Sakata, A.;Kawahara, S.;Yamauchi, K.;Kawamura, Y.;Muguruma, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.417-424
    • /
    • 2003
  • Inhibitory activities against angiotensin I-converting enzyme (ACE) of enzymatic hydrolysates of porcine skeletal muscle proteins were investigated. Myosin B, myosin, actin, tropomyosin, troponin and water-soluble proteins extracted from pork loin were digested by eight kinds of proteases, including pepsin, $\alpha$-chymotrypsin, and trypsin. After digestion, hydrolysates produced from all proteins showed ACE inhibitory activities, and the peptic hydrolysate showed the strongest activity. In the case of myosin B, the molar concentration of peptic hydrolysate required to inhibit 50% of the activity increased gradually as digestion proceeded. The hydrolysates produced by sequential digestion with pepsin and $\alpha$-chymotrypsin, pepsin and trypsin or pepsin and pancreatin showed weaker activities than those by pepsin alone, suggesting that ACE inhibitory peptides from peptic digestion might lose their active sequences after digestion by the second protease. However, the hydrolysates produced by sequential digestion showed stronger activities than those by $\alpha$-chymotrypsin, trypsin or pancreatin alone. These results suggested that the hydrolysates of porcine meat were able to show ACE inhibitory activity, even if they were digested in vivo, and that pork might be a useful source of physiologically functional factors.

Development of Reaction Flavors with Enzymatic Hydrolysate of Krill Euphausia superba in Ramen Sauce

  • Kim, Ye-Joo;Park, Jin-Yong;Park, Hyun-Joo;Kim, Seon-Bong;Chun, Byung-Soo;Lee, Yang-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.403-408
    • /
    • 2014
  • Antarctic krill Euphausia superba is an excellent potential source of food protein. We used enzymatic hydrolysate of Antarctic krill and 10 other precursors to seek the optimum krill reaction flavor and apply to ramen sauce. Krill concentrate and powder were compared by sensory evaluation. The krill powder performed better preference, and was added to ramen sauce, which itself performed better than a commercial shrimp flavored sauce. In total, 47 and 39 volatile compounds were identified from krill concentrate and powder, respectively. Both products contained many aldehydes and sulfur-containing compounds. The whisky flavor of aldehydes lowered the shrimp flavor of the krill concentrate. Sulfur-containing compounds were found in krill powder, confirming the results from sensory evaluation.

Purification of Angiotensin I-Converting Enzyme Inhibitory Peptide from Squid Todarodes pacificus Skin (오징어(Todarodes pacificus) 껍질로부터 Angiotensin I 전환효소 저해 펩티드의 분리 정제)

  • Lee, Jung-Kwon;Jeon, Joong-Kyun;Byun, Hee-Guk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.2
    • /
    • pp.118-125
    • /
    • 2011
  • In this study, an angiotensin I-converting enzyme (ACE) inhibitor from squid skin was purified and characterized. Squid (Todarodes pacificus) skin protein isolates were hydrolyzed using six commercial proteases: alcalase, ${\alpha}$-chymotrypsin, neutrase, papain, pepsin, and trypsin. The peptic hydrolysate had the highest ACE inhibitory activity. The ACE inhibitory peptide was purified using Sephadex G-25 column chromatography and reverse phase high-performance liquid chromatography (HPLC) with a $C_{18}$ column. The purified ACE inhibitory peptide was identified and sequenced, and found to consist of seven amino acid residues: Ser-Ala-Gly-Ser-Leu-Val-Pro (657Da). The $IC_{50}$ value of the purified ACE inhibitory peptide was 766.2 ${\mu}M$, and Lineweaver-Burk plots suggested that the purified peptide acts as a noncompetitive ACE inhibitor. These results suggest that the ACE inhibitory peptide purified from the peptic hydrolysate of squid skin may be of benefit in developing antihypertensive drugs and functional foods.

Characterization of Yeast Protein Hydrolysate for Potential Application as a Feed Additive

  • Ju Hyun Min;Yeon Ju Lee;Hye Jee Kang;Na Rae Moon;Yong Kuk Park;Seon-Tea Joo;Young Hoon Jung
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.723-737
    • /
    • 2024
  • Yeast protein can be a nutritionally suitable auxiliary protein source in livestock food. The breakdown of proteins and thereby generating high-quality peptide, typically provides nutritional benefits. Enzyme hydrolysis has been effectively uesed to generate peptides; however, studies on the potential applications of different types of enzymes to produce yeast protein hydrolysates remain limited. This study investigated the effects of endo- (alcalase and neutrase) and exotype (flavourzyme and prozyme 2000P) enzyme treatments on yeast protein. Endotype enzymes facilitate a higher hydrolysis efficiency in yeast proteins than exotype enzymes. The highest degree of hydrolysis was observed for the protein treated with neutrase, which was followed by alcalase, prozyme 2000P, and flavourzyme. Furthermore, endotype enzyme treated proteins exhibited higher solubility than their exotype counterparts. Notably, the more uniform particle size distribution was observed in endotype treated yeast protein. Moreover, compared with the original yeast protein, the enzymatic protein hydrolysates possessed a higher content of β-sheets structures, indicating their higher structural stability. Regardless of enzyme type, enzyme treated protein possessed a higher total free amino acid content including essential amino acids. Therefore, this study provides significant insights into the production of protein hydrolysates as an alternative protein material.