Browse > Article
http://dx.doi.org/10.5713/ajas.2003.417

Angiotensin I-converting Enzyme Inhibitory Activities of Porcine Skeletal Muscle Proteins Following Enzyme Digestion  

Katayama, K. (The United Graduate School of Agricultural Sciences, Kagoshima University)
Fuchu, H. (Marudai Food Co., Ltd.)
Sakata, A. (Marudai Food Co., Ltd.)
Kawahara, S. (Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, Miyazaki University)
Yamauchi, K. (Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, Miyazaki University)
Kawamura, Y. (Graduate School of Applied Life Science, Kinki University)
Muguruma, M. (Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, Miyazaki University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.16, no.3, 2003 , pp. 417-424 More about this Journal
Abstract
Inhibitory activities against angiotensin I-converting enzyme (ACE) of enzymatic hydrolysates of porcine skeletal muscle proteins were investigated. Myosin B, myosin, actin, tropomyosin, troponin and water-soluble proteins extracted from pork loin were digested by eight kinds of proteases, including pepsin, $\alpha$-chymotrypsin, and trypsin. After digestion, hydrolysates produced from all proteins showed ACE inhibitory activities, and the peptic hydrolysate showed the strongest activity. In the case of myosin B, the molar concentration of peptic hydrolysate required to inhibit 50% of the activity increased gradually as digestion proceeded. The hydrolysates produced by sequential digestion with pepsin and $\alpha$-chymotrypsin, pepsin and trypsin or pepsin and pancreatin showed weaker activities than those by pepsin alone, suggesting that ACE inhibitory peptides from peptic digestion might lose their active sequences after digestion by the second protease. However, the hydrolysates produced by sequential digestion showed stronger activities than those by $\alpha$-chymotrypsin, trypsin or pancreatin alone. These results suggested that the hydrolysates of porcine meat were able to show ACE inhibitory activity, even if they were digested in vivo, and that pork might be a useful source of physiologically functional factors.
Keywords
Angiotensin I-Converting Enzyme; Peptide; Porcine Skeletal Protein; Protease Digestion;
Citations & Related Records

Times Cited By Web Of Science : 20  (Related Records In Web of Science)
Times Cited By SCOPUS : 17
연도 인용수 순위
1 Szent-Gyorgyi, A. 1951. Chemistry of muscle contraction 2nd. ed. 151-152. Academic Press. New York
2 Yamamoto, S., I. Toida and K. Iwai. 1980. Re-examination of the spectrophotometric assay for serum angiotensin-converting enzyme. Nippon Kyobu Shikkangaku Kaishi (in Japanese). 18:297-303.
3 Yoshii, H., N. Tachi, O. Sakamura, H. Takeyama, R. Ohba and T. Itani. 1999. Antihypertensive effect of oligo-peptide derived from hen's eggs. Nippon Shokuhin Kagaku Kogaku Kaishi 46: 45-50. (in Japanese).   DOI   ScienceOn
4 Adibi, S., J. Klemencic and E. Philips. 1969. Metabolism of branched-chain amino acid in starvation. Clin. Res. 17:376.
5 Matsui, T., H. Matsufuji, E. Seki, K. Osajima, M. Nakashima and Y. Osajima. 1993. Inhibition of angiotensin I converting enzyme by Bacillus licheniformis alkaline protease hydrolysates derived from sardine muscle. Biosci. Biotech. Biochem. 57:922-925.   DOI   ScienceOn
6 Cheung, H. S., F. L. Wang, M. A. Ondetti, E. F. Sabo and D. W. Cushman. 1980. Binding of peptide substrate and inhibitors of angiotensin-converting enzyme. J. Biol. Chem. 255:401-407.
7 Craft, I. L., D. Geddes, C. W. Hyde, I. J. Wise and D. M. Matthews. 1968. Absorption and malabsorption of glycine and glycine peptide in man. Gut 9:425-437.   DOI   ScienceOn
8 Joel, D. P. and A. S. James. 1982. Methods in Enzymology. Academic Press. New York. 85:164-171.
9 Matsumoto, K., A. Ogikubo, T. Yoshino, T. Matsui and Y. Osajima. 1994. Separation and purification of angiotensin I converting enzyme inhibitory peptide in peptic hydrolyzate of oyster. Nippon Shokuhin Kagaku Kogaku Kaishi 41:589-594. (in Japanese).
10 Potter, J. D. 1982. Methods in Enzymology, Academic Press. New York. 85:241-249.
11 Saito, Y., K. Wanezaki (Nakamura), A. Kawamoto and S. Imayasu. 1994. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees. Biosci. Biotech. Biochem. 58:1767-1771.   DOI   ScienceOn
12 Smillie, L. B. 1982. Methods in Enzymology. Academic Press. New York. 85:234-237.
13 Suetsuna, K. and K. Osajima. 1986. The Inhibitory activities against angiotensin I converting enzyme of basic peptides originating from sardine and hair tail meat. Nippon Suisan Gakkaishi 52:1981-1984. (in Japanese).   DOI
14 Kawamura, Y., T. Takane, M. Satake and T. Sugimoto. 1992. Physiologically active peptide motif in proteins: Peptide inhibitor of ACE from the hydrolysates of antarctic krill muscle protein. J. Agric. Res. Quart. 26:210-213.
15 Kohama, Y., S. Matsumoto, H. Oka, T. Teramoto, M. Okabe and T. Mimura. 1988. Isolation of angiotensin I converting enzyme inhibitor from tuna muscle. Biochem. Biophys. Res. Commun. 155:332-337.   DOI   ScienceOn
16 Schagger, H. and G. Jagow. 1987. Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range 1 to 100 kDa. Anal. Biochem. 166:368-379.   DOI   ScienceOn
17 Gornall, A. G., C. J. Bardawill and M. M. David. 1949. Determination of serum protein by means of the biuret reaction. J. Biol. Chem. 177:751-766.
18 Hattori, A. 1996. Niku no Kagaku, ed. by Okitani A. Asakura shoten, Tokyo, Japan. pp. 48-49
19 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.   DOI   PUBMED   ScienceOn
20 Fujita, H., K. Yokoyama and M. Yoshikawa. 2000. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J. Food Sci. 65:564-569.   DOI   ScienceOn
21 Ohta, T., A. Iwashita, S. Sasaki and Y. Kawamura. 1999. Antihypertensive action of the orally administered protease hydrolysates of chum salmon head and their angiotensin Iconverting enzyme inhibitory peptides. Food Sci. Technol. Int., Tokyo 3:339-343.
22 Jimenez-Colmenero, F., J. Carballo and S. Cofrades. 2001. Healthier meat and meat products: their role as functional foods. Meat Sci. 59:5-13.   DOI   ScienceOn
23 Murphy, J. B. and M. W. Kies 1960. Note on spectrophotometric determination of proteins in dilute solutions. Biochim. Biophys. Acta 45:382-384.   DOI
24 Maruyama, S., K. Nakagomi, N. Tomizuka and H. Suzuki. 1985. Angiotensin I-converting enzyme inhibitor derived from an enzymatic hydrolysate of casein. II. Isolation and bradykininpotentiating activity on the uterus and the ileum of rats. Agric. Biol. Chem. 49:1405-1409.   DOI
25 Hazra, A. K., S. P. Chock and R. W. Albers. 1984. Protein determination with trinitrobenzene sulfonate: a method relatively independent of amino acid composition. Anal. Biochem. 137:437-443.   DOI   ScienceOn
26 Lieberman, J. 1975. Elevation of serum angiotensin-convertingenzyme (ACE) level in sarcoidosis. Am. J. Med. 59:365-372.   DOI   PUBMED   ScienceOn
27 Kawamura, Y., T. Sugimoto, T. Takane and M. Satake. 1989. Biologically active peptide derived from food proteins (I) Angiotensin-converting-enzyme inhibiting peptides from water-soluble protein of sardine muscle. Biryo Eiyouso Kenkyu 6:117-121. (in Japanese).
28 Margossian, S. S. and S. Lowey. 1982. Methods in Enzymology. Academic Press. New York. 85:55-59.
29 Sugiyama, K., K. Takada, M. Egawa, I. Yamamoto, H. Onizuka and K. Oba. 1991. Hypertensive effect of fish protein hydrolysate. Nippon Nogeikagaku kaishi (in Japanese). 65:35-43.   DOI
30 Cushman, D. W. and H. S. Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20:1637-1648.   DOI   ScienceOn
31 Nakashima, Y., K. Arihara, A. Sasaki, H. Mio, S. Ishikawa and M. Itoh. 2002. Antihypertensive activities of peptides derived from porcine skeletal muscle myosin in spontaneously hypertensive rats. J. Food Sci. 67:434-437.   DOI   ScienceOn
32 Arihara, K., Y. Nakashima, T. Mukai, T. Ishikawa and M. Itoh. 2001. Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Sci. 57:319-324.   DOI   ScienceOn
33 Eto, Y., T. Ito and S. Nishioka. 1999. Antihypertensive effect of alkaline protease hydrolysate of whey protein on blood pressure in spontaneously hypertensive rats. Nippon Eiyo Shokuryogaku kaishi 52:301-306. (in Japanese).   DOI   ScienceOn
34 Yokoyama, K., H. Chiba and M. Yoshikawa. 1992. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito. Biosci. Biotech. Biochem. 56:1541-1545.   DOI   ScienceOn
35 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.   DOI   PUBMED   ScienceOn
36 Li, D. F., X. H. Zhao, T. B. Yang, E. W. Johnson and P. A. Thacker. 1999. A comparison of the intestinal absorption of amino acids in piglets when provided in free form or as a dipeptide. Asian-Aust. J. Anim. Sci. 12:939-943.