• Title/Summary/Keyword: Protein Hydrolysate

Search Result 257, Processing Time 0.026 seconds

Effect of Silk Fibroin Hydrolysate on the Apoptosis of MCF-7 human Breast Cancer Cells

  • Chon, Jeong-Woo;Jo, Yoo-Young;Lee, Kwang-Gill;Lee, Heui-Sam;Yeo, Joo-Hong;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.228-236
    • /
    • 2013
  • Breast cancer is one of the most common cancers among women worldwide. Recently anticancer agents have been developed using natural substances. To evaluate the anticancer effect of hydrolysates of silk fibroin (HSF), we investigated the effect of HSF on cell viability and apoptosis of a breast cancer cell line, MCF-7, induced through the mitochondrial pathway. The result showed that HSF decreased cell viability in MCF-7 cells in a dose- and time-dependent manner, resulting in an increase in the sub-G1 phase cell population. HSF increased the level of the pro-apoptotic Bax protein and decreased the levels of the anti-apoptotic Bcl-2 protein. In addition, HSF induced apoptosis in MCF-7 cells through a mitochondria-dependent pathway by increasing levels of cytochtome c, and cleavage of PARP. Taken together, these findings suggest that HSF inhibits the proliferation of MCF-7 breast cancer cells through a mitochondria and caspase dependent apoptotic pathway.

Evaluation of Angiotensin -I- Converting Enzyme Inhibitory Activity and Protein Changes of Enzymatic Hydrolysate Extracted from Hanwoo Loin and Round Myosin B (한우 등심과 우둔에서 추출한 Myosin B의 효소적 가수분해물의 단백질 변화와 Angiotensin -I- Converting Enzyme(ACE) 저해효과)

  • Kim, Y.J.;Chin, Koo-Bok
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.129-136
    • /
    • 2007
  • This study was performed to determine the protein profiles using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Angiotensin-I-converting enzyme(ACE) inhibitory activity (IC50) as affected by the various meat cuts, digestion times with pepsin. Hydrolysates having the protein concentration of 10 ug/mL had approximately 36∼39% ACE inhibitory activities, regardless of meat cut and digestion time. Protein concentration and ACE inhibitory activity of the diluted hydrolysate increased after 1-hr digestion. In original hydrolysates, ACE inhibitory activities of loin had higher than those of round (P<0.05). In addition, non-heated hydrolysates had higher ACE inhibitory activities than heated counterparts. When myosin B was digested by pepsin more than 1 hr, improved ACE inhibitory activities were observed as compared to the non-digested control.

Preparation of Hypoallergenic Whey Protein Hydrolysate by a Mixture of Alcalase and Prozyme and Evaluation of Its Digestibility and Immunoregulatory Properties

  • Jiyeon Yang;Se Kyung Lee;Young Suk Kim;Hyung Joo Suh;Yejin Ahn
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.594-611
    • /
    • 2023
  • Whey protein (WP) has nutritional value, but the presence of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA) cause allergic reactions. In this study, hypoallergenic whey protein hydrolyate (HWPH) was prepared by decomposing β-LG and α-LA of WP using exo- and endo-type proteases. The enzyme mixing ratio and reaction conditions were optimized using response surface methodology (RSM). Degradation of α-LA and β-LG was confirmed through gel electrophoresis, and digestion, and absorption rate, and immunostimulatory response were measured using in vitro and in vivo systems. Through RSM analysis, the optimal hydrolysis conditions for degradation of α-LA and β-LG included a 1:1 mixture of Alcalase and Prozyme reacted for 10 h at a 1.0% enzyme concentration relative to substrate. The molecular weight of HWPH was <5 kDa, and leucine was the prominent free amino acid. Both in vitro and in vivo tests showed that digestibility and intestinal permeability were higher in HWPH than in WP. In BALB/c mice, as compared to WP, HWPH reduced allergic reactions by inducing elevated Type 1/Type 2 helper T cell ratio in the blood, splenocytes, and small intestine. Thus, HWPH may be utilized in a variety of low allergenicity products intended for infants, adults, and the elderly.

Effects of a new generation of fish protein hydrolysate on performance, intestinal microbiology, and immunity of broiler chickens

  • Amir Hossein Alizadeh-Ghamsari;Amir Reza Shaviklo;Seyyed Abdullah Hosseini
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.804-817
    • /
    • 2023
  • This study was conducted to evaluate the effects of co-dried fish protein hydrolysate (CFPH) on broilers performance, intestinal microbiology, and cellular immune responses. Five hundred one-day-old (Ross 308) male broilers were allocated to four treatments with five replicates of 25 birds in a completely randomized design. The experimental treatments included four levels of CFPH (0% as the control, 2.5%, 5%, and 7.5%) in the isonitrogenous and isocaloric diets. During the experiment, body weight (BW) and feed intake (FI) were periodically recorded in addition to calculating average daily gain (ADG), feed conversion ratio (FCR), liveability index, and European broiler index (EBI). In addition, cellular immune responses were evaluated at 30 days of age. On day 42, ileal contents were obtained to examine the microbial population. Based on the findings, Dietary supplementation of 5 and 7.5% CFPH increased the percentage of the thigh while decreasing the relative weight of the gizzard compared to the control group. The highest relative length of jejunum was observed in birds receiving 2.5 and 5% CFPH, and its highest relative weight belonged to birds fed with 5% CFPH. The number of coliforms, enterobacters, and total gram-negative bacteria in the intestines of birds receiving CFPH was less than that of the control group. In general, the application of CFPH in broiler nutrition can decrease the level of soybean meal in diet and it can be considered as a new protein supplement in poultry production. It is suggested to study the incorporation of this new supplement in other livestock's diets.

Animal protein hydrolysate reduces visceral fat and inhibits insulin resistance and hepatic steatosis in aged mice

  • Su-Kyung Shin;Ji-Yoon Lee;Heekyong R. Bae;Hae-Jin Park;Eun-Young Kwon
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.46-61
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: An increasing life expectancy in society has burdened healthcare systems substantially because of the rising prevalence of age-related metabolic diseases. This study compared the effects of animal protein hydrolysate (APH) and casein on metabolic diseases using aged mice. MATERIALS/METHODS: Eight-week-old and 50-week-old C57BL/6J mice were used as the non-aged (YC group) and aged controls (NC group), respectively. The aged mice were divided randomly into 3 groups (NC, low-APH [LP], and high-APH [HP] and fed each experimental diet for 12 weeks. In the LP and HP groups, casein in the AIN-93G diet was substituted with 16 kcal% and 24 kcal% APH, respectively. The mice were sacrificed when they were 63-week-old, and plasma and hepatic lipid, white adipose tissue weight, hepatic glucose, lipid, and antioxidant enzyme activities, immunohistochemistry staining, and mRNA expression related to the glucose metabolism on liver and muscle were analyzed. RESULTS: Supplementation of APH in aging mice resulted in a significant decrease in visceral fat (epididymal, perirenal, retroperitoneal, and mesenteric fat) compared to the negative control (NC) group. The intraperitoneal glucose tolerance test and area under the curve analysis revealed insulin resistance in the NC group, which was alleviated by APH supplementation. APH supplementation reduced hepatic gluconeogenesis and increased glucose utilization in the liver and muscle. Furthermore, APH supplementation improved hepatic steatosis by reducing the hepatic fatty acid and phosphatidate phosphatase activity while increasing the hepatic carnitine palmitoyltransferase activity. Furthermore, in the APH supplementation groups, the red blood cell (RBC) thiobarbituric acid reactive substances and hepatic H2O2 levels decreased, and the RBC glutathione, hepatic catalase, and glutathione peroxidase activities increased. CONCLUSIONS: APH supplementation reduced visceral fat accumulation and alleviated obesity-related metabolic diseases, including insulin resistance and hepatic steatosis, in aged mice. Therefore, high-quality animal protein APH that reduces the molecular weight and enhances the protein digestibility-corrected amino acid score has potential as a dietary supplement for healthy aging.

Optimization of Enzymatic Hydrolysis with Cryotin F on Antioxidative Activities for Shrimp Hydrolysate Using Response Surface Methodology

  • Lee, Yang-Bong;Raghavan, Sivakumar;Nam, Min-Hee;Choi, Mi-Ae;Hettiarachchy, Navam S.;Kristinsson, Hordur G.;Marshall, Maurice R.
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.323-328
    • /
    • 2009
  • Cryotin F could be used for hydrolyzing shrimp byproducts into bioactive ingredients, which could be used as value-added products. The objective of this study was to investigate the optimum condition for antioxidative activities of the enzymatic hydrolysate produced with Cryotin F using response surface methodology with central composite rotatable design. Shrimp byproducts (shells and heads) were hydrolyzed with Cryotin F. The experimental ranges of the independent variables for 20 experimental runs were 28.2-61.8${^{\circ}C}$ reaction temperature, pH 6-10 and 0.5-5.5% enzyme concentration. The degree of hydrolysis for the reaction products was measured. Their antioxidative activities were measured using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging activity and Fe-chelating activity. The experimental method with central composite rotatable design was well designed to investigate the optimum condition for biofunctional ingredients with antioxidative activities using Cryotin F because of their high R2 values of 0.97 and 0.95 for DPPH-scavenging activity and Fe-chelating activity, respectively. Change in enzyme concentration did not significantly affect their antioxidative activities (p<0.05). Both DPPH scavenging activity and chelating activity against Fe for the enzyme hydrolysates were more affected by the pH of enzyme hydrolysis than by their action temperature. DPPH-scavenging activity was higher at acidic pH than alkali pH, while chelating activity against Few was inversely affected. Hydrolysate of shrimp byproducts showed high antioxidative activities depending on the treatment condition, so the optimum treatment of enzymatic hydrolysate with Cryotin F and other proteases can be applied to shrimp byproducts (shells) and other protein sources for biofunctional ingredients.

A study on the Rapid Processing of Hydrolyzed Anchovy Paste and Its Quality Stability (효소분해법에 의한 페이스트형 속성 멸치젓의 제조 및 품질에 관한 연구)

  • HAN Bong-Ho;KIM Sang-Ho;CHO Hyun-Duk;CHO Man-Gi;BAE Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.79-87
    • /
    • 1997
  • A study on the processing method of anchovy hydrolysate paste (AHP) was carried out to improve the sensory quality of salted and fermented fish. Homogenized whole anchovy was hydrolyzed using commercial pretenses, Complex enzyme-2000 (CE, Pacific Chem. Co.) and Alcalase (AL, Novo), in a cylindrical vessel with 4 baffle plates and 6-bladed turbine impeller. Optimal pH, temperature, and enzyme concentration for the hydrolysis with CE and AL were $7.0,\;52^{\circ}C,\;7\%$, and $8.0,\;60^{\circ}C,\;6\%$, respectively. The rational amount of water for homogenization, agitation speed, and hydrolyzing time were $100\%\;(w/w)$, 100 rpm, and 210 min, respectively. To make the hydrolysate to paste type, it was effective to mix the additives, such as starch, soybean protein, agar, and carrageenan gum to the hydrolysate 5 min before the end of boiling at $100^{\circ}C$ for 30 min. Minimal NaCl concentration for long-term preservation was $15\%$, and this could be reduced to $12\%$ by adding $5\%$ of KCl. yield of the AHP based on the total nitrogen content was $94.6\~97.0\%,\;and\;86.0\~89.2\%$, of the nitrogen was amino nitrogen. Salinity, pH and histamine content of the AHP prepared with $12\%$ NaCl and $5\%$ KCl were $9.3\~9.9\%,\;6.1\~6.2$, and below 13 mg/100 g, respectively. The AHP was stable at $26{\pm}3^{\circ}C$ for 60 days on bacterial growth, and addition of $0.05\%$ of rosemary (Herbalox) extract was effective to inhibit the lipid oxidation of the AHP during storage.

  • PDF

Partial Purification of Antioxidative Peptides from Gelatin Hydrolysates of Alaska Pollock Surimi Refiner Discharge

  • Heu, Min-Soo;Park, Chan-Ho;Kim, Hyung-Jun;Park, Jae-W.;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.249-257
    • /
    • 2009
  • This study is conducted to partially purify an antioxidative peptide in a two-step gelatin hydrolysate from Alaska pollock surimi refiner discharge, which was obtained by sequential treatment with Pronase E and Flavourzyme. The two-step gelatin hydrolysate was fractionated using chromatographic methods. Based on the same protein concentration of each fraction, the antioxidative activities (85.1-95.4%) of positive fractions fractionated by ion-exchange chromatography were higher than those (27.2-87.8%) from gel filtration. Then, further purification of the positive fractions was performed. Among them, the partially purified A1C1L2G1 and A1C1L2G2 fractions showed 96.2% and 85.1% inhibition, respectively, of linoleic acid peroxidation. The A1C1L2G1 fraction was composed of 15 kinds of amino acids and the predominant amino acids were proline, glycine and alanine. The results obtained in this study suggested that the fraction partially purified through chromatographic methods from the two-step gelatin hydrolysate of Alaska pollock surimi refiner discharge could be useful as a supplementary source for improving health functionality.

Characteristics of Angiotensin Converting Enzyme Inhibitory Peptides from Thermolysin Hydrolysate of Manila clam, Ruditapes philippinarum Proteins (바지락 단백질 Thermolysin 가수분해물의 Angiotensin Converting Enzyme 저해 Peptide의 특성)

  • Lee Tae Gee;Yeum Dong Min;Kim Seon Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.5
    • /
    • pp.529-533
    • /
    • 2002
  • The peptides inhibiting angiotensin converting enzyme (ACE) were isolated from the hydrolysate of manila clam (Ruditapes philippinamm) proteins prepared with thermolysin. The thermolysin hydrolysate was pretreated with membrane filter (MW cut-off 10,000) to obtain the peptide fraction with ACE inhibition. The crude peptides were applied to a Sephadex LH-20 column and eluted with $30\%$ methanol. The three active fractions (A, B and C) were collected and concentrated, and then applied to a SP-Toyopearl 650S column equilibrated with distilled water and was eluted with a linear gradient of NaCl concentration (0 to 1 M). The four active fractions (A-1, A-2, B-1 and C-1) were collected and concentrated, and then applied to a SuperQ-Toyopearl 650S column equilibrated with distilled water and was eluted with a linear gradient of NaCl concentration (0 to 1 M). The maximum inhibitory activity was observed in the fraction B-1Q showed the IC_{50} values of 0.748 $\mu$g. The abundant amino acids obtained from active fraction B-1Q were leucine, isoleucine, alanine and threonine.

The Effect of the Addition of Encapsulated Collagen Hydrolysate on Some Quality Characteristics of Sucuk

  • Palamutoglu, Recep;Saricoban, Cemalettin
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.807-818
    • /
    • 2016
  • The effect of addition commercial fish collagen hydrolysate and encapsulated fish collagen hydrolysate on the quality characteristics of sucuk (a traditional Turkish dry-fermented sausage) was investigated. Fish collagen hydrolysates were encapsulated with maltodextrin (MD) which has two different dextrose equivalent (12DE and 19 DE), with two different types of core/coating material ratios (10% peptide : 90% MD, 20% peptide : 80% MD). Than six group of sucuk dough (control, peptide, MD1210, MD1220, MD1910, MD1920) prepared and naturally fermented. The effects of the ripening period (28 d), treatment (peptide and encapsulated peptide addition) 'ripening period ${\times}$ treatment' interaction on sucuk's pH, lactic acid contents, $a_w$ values and moisture contents were statistically significant (p<0.01). The pH, moisture and $a_w$ decrease and lactic acid concentration increses during ripening period. The highest pH was observed with peptide added group (5.41), and encapsulated peptide added groups (4.76-4.77) were lower than the control group (5.26). Lactic acid concentration was affected from treatment and all treatment groups lactic acid concentration (0.185-0.190%) were higher than the control group (0.164%). Antioxidant and Angiotensin converting enzyme inhibition activities of water soluble protein extracts were significantly (p<0.01) increased during ripening time. Antioxidant activity reached the highest level at $28^{th}$ d. There was no significant increase observed after fermentation for both activities. Antioxidant activity of encapsulated peptide added (%39.56-40.48) groups were higher than control (34.28%) and peptide added (33.99%) groups except MD1920 (38.30%). The effect of the ripening period of the sucuk samples on TBA values was found to be statistically significant (p<0.01) while treatment and 'ripening period ${\times}$ treatment' interaction were not to be significant (p<0.05). The value of hardness was the highest in the encapsulated peptide added groups (29.27, 35.83 N), and it was 20.40 N and 15.41 N in the peptide added group and the control group respectively.