• Title/Summary/Keyword: Protein Expression Pattern

Search Result 417, Processing Time 0.023 seconds

A Novel Glycine-Rich Region in Sox4 is a Target for the Proteolytic Cleavage in E. coli (전사활성 인자인 Sox4의 단백질 분해효소에 의한 표적 부위에 관한 연구)

  • 허은혜;최주연;장경희;김인경;임향숙
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.153-161
    • /
    • 2002
  • Sox4, a transcription factor, consists of three functional domains: an HMG-box domain as a DNA binding domain, serine rich region as a transactivation domain and glycine rich region (GRR), an unknown functional domain. Although Sox4 is known to be functionally involved in heart, B-cell and reproductive system development, its physiological function remains to be elucidated. We used pGEX expression system to develop a simple and rapid method for purifying Sox4 protein in suitable forms for biochemical studies of their functions. Unexpectedly, we observed that full-length Sox4 appears to be protease-sensitive during expression and purification in E. coli. To map the protease-sensitive site in Sox4, we generated various constructs with each of functional domains of Sox4 and purified as the GST-Sox4 fusion proteins using glutathione beads. We found that the specific cleavage site for the proteolytic enzyme, which exists in E. coli, is localized within the novel GRR of Sox4. Our study suggest that the GRR of Sox4 may a target for the cellular protease action and this cleavage in the GRR may be involved in regulating physiological function of Sox4. Additionally, our study may provide a useful method for investigating the proteolytic cleavage of the target molecule in E. coli.

Regulatory Mechanism of Radiation-induced Cancer Cell Death by the Change of Cell Cycle (세포주기 변화에 타른 방사선 유도 암세포 사망의 조절기전)

  • Jeong Soo-Jin;Jeong Min-Ho;Jang Ji-Yeon;Jo Wol-Soon;Nam Byung-Hyouk;Jeong Min-Za;Lim Young-Jin;Jang Byung Gon;Youn Seon-Min;Lee Hyung Sik;Hur Won Joo;Yang Kwang Mo
    • Radiation Oncology Journal
    • /
    • v.21 no.4
    • /
    • pp.306-314
    • /
    • 2003
  • Purpose : In our Previous study, we have shown the main cel1 death pattern Induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myeiogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herblmycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. Materials and Methods: K562 cells In exponential growth phase were used for this study. The cells were Irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25 $\mu$N of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. Results: X-irradiated cells were arrested In the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first ceil-cycle post-treatment and an increase of cyclin Bl were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent Gl accumulation. HMA-induced cell cycle modifications correlated with the increase of CDK2 kinase activity, the decrease of the expressions of cyclins I and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin Bl and cdc25c and cdc25C kinase activity, increased the expression of pl6, and sustained senescence and megakaryocytic differentiation. Conclusion: The effects of HMA and genistein on the radiation-induced cell death of KS62 cells were closely related to the cell cycle regulatory activities. In this study, we present a unique and reproducible model in which for investigating the mechanisms of various, radiation-induced, cancer cell death patterns. Further evaluation by using this model will provide a potent target for a new strategy of radiotherapy.

Co-Culture Model Using THP-1 Cell and HUVEC on AGEs-Induced Expression of Cytokines and RAGE (THP-1 Cell과 HUVEC을 이용한 Co-Culture Model System에서 최종당화산물에 의한 Cytokines와 RAGE 발현)

  • Lee, Kwang-Won;Lee, Hyun-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.3
    • /
    • pp.385-392
    • /
    • 2011
  • Although monoculture methods have been remarkably useful due to their simplicity, they have serious limitation because of the different types of cells communication with each other in many physiological situations. We demonstrated levels of markers of endothelial dysfunction such as tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and interleukin-1$\beta$ (IL-1$\beta$) as well as stimulation of receptor of advanced glycation endproducts (AGEs) on monoand co-culture system such as only monocyte (THP-1) cultivation system, only endothelial cell (HUVEC) cultivation system, and co-cultivation system of THP-1 and HUVEC. The mRNA levels of TNF-$\alpha$ and IL-1$\beta$ on HUVEC increased by the co-culture with monocyte after 4 hr at 100 ${\mu}g/mL$ glyceraldehyde-AGE. The secreted protein contents into medium of TNF-$\alpha$ and IL-1$\beta$ increased after 8 hr approximately 2~2.5 times compared to mono-cultivation. In contrast, the mRNA level of receptor of AGE (RAGE) was relatively insensitive on the co-culture system. The mediators by which monocytes activate endothelial cell have not been fully elucidated. In this study we confirmed production of soluble cytokines such as TNF-$\alpha$ and IL-1$\beta$ by monocytes. Use of monocyte conditioned medium, which contains both cytokines, can activate endothelial cell.

Anti-inflammatory effects of seed ethanolic extracts of the common buckwheat and tartary buckwheat are mediated through the suppression of inducible nitric oxide synthase and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophage cells (일반메밀과 쓴메밀 종실 추출물의 RAW 264.7 대식세포에서 LPS에 의해 유도되는 iNOS 및 염증성 사이토카인 발현 저해를 통한 항염증 효과 비교)

  • Kim, Su Jeong;Sohn, Hwang Bae;Lee, Kyung-Tae;Shin, Ji-Sun;Kim, Suyeon;Nam, Jung Hwan;Hong, Su Young;Suh, Jong Taek;Chang, Dong Chil;Kim, Yul Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.565-575
    • /
    • 2019
  • The ethanolic seed extracts of the common buckwheat (CB) and tartary buckwheat (TB) were examined for their anti-oxidant and anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW 264.7 cells. In this study, it was observed that the rutin content of TB extracts was 65-78 times higher than the CB extracts, while quercetin was only detected in the TB extracts. In addition, TB extracts were observed to have 1.8-2.0 times higher flavonoid and polyphenolic content than the CB extracts. Cytotoxicity was not observed when both the buckwheat extracts were evaluated at concentrations in the range of 6.25-400 ㎍/mL. The treatment with TB extracts significantly suppressed the LPS-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression at the protein and mRNA levels. The TB extracts more potently inhibited the LPS-induced production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 than the CB extracts. The mRNA levels of TNF-α, IL-1β, and IL-6 were also significantly inhibited both by the TB and CB extracts in a pattern similar to their production.

IMMUNOHISTOCHEMICAL ASSAYS FOR THE EXPRESSION OF EPIDERMAL GROWTH FACTOR-SIGNALING PROTEINS IN ADENOID CYSTIC CARCINOMAS OF HUMAN SALIVARY GLANDS (타액선 선양낭성암종에서 상피성장인자 신호전달 단백의 발현에 관한 면역조직화학적 연구)

  • Park, Young-Wook;Kim, Jung-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.6
    • /
    • pp.499-510
    • /
    • 2006
  • Malignant tumors of the human salivary glands may arise from major or minor salivary glands. Adenoid cystic carcinoma (ACC) is the second most common malignant neoplasm in the salivary glands. ACC is occasionally highly aggressive tumor that readily invades adjacent tissues and metastasize to distant organs at early stages of the disease. Although ACC tends to grow slowly, treatment outcome may be poor due to wide local infiltration, perineural or intraneural spread and a propensity for hematogenous metastasis. Therefore, knowledge of cellular and molecular characteristics that influence the growth, survival and metastasis of tumor cells, is important for new treatment strategies of salivary ACC. I determined expressions of epiderma growth factor (EGF)-signaling molecules using surgical specimens of human ACCs. Protein expressions of EGF, transforming growth $factor(TGF)-{\alpha}$, EGF receptor (EGFR), phosphorylated EGFR (pEGFR), and human EGF receptor (HER)-2 were assessed in 18 cases of salivary ACC by immunohistochemical staining. Adjacent normal salivary tissues and mucosal tissues, uninvolved by the malignant tumor, served as internal controls. Most of the tumors, especially ACC with a tubulocribriform pattern, were positive for EGF signaling molecules. The overall percentages of the 18 specimens expressing EGF, $TGF-{\alpha}$, EGFR, pEGFR, and HER2 were 50, 89, 61, 61 and 83% respectively. Moreover, tumor-associated endothelial cells and infiltrating immune-related cells in the stroma of ACC, also expressed these biomarkers. Taken together, EGF-signaling molecules are actively expressed in salivary ACC. Therefore, we suggest that these biomarkers can be molecular targets for new treatment strategies of salivary tumors.

Study of Hedyotis Diffusa Methanol Extract on Anti-tumoral Effect and Mechanism (백화사설초(白花蛇舌草) 메탄올 추출물(抽出物)의 항종양(抗腫瘍) 효과(效果) 및 항암(抗癌) 기전(機轉)에 관(關)한 연구(硏究))

  • No, Hoon-Jeong;Moon, Gu;Moon, Seok-Jae;Won, Jin-Hee;Moon, Young-Ho;Park, Rae-Gil
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.6 no.1
    • /
    • pp.81-97
    • /
    • 2000
  • Objectives: This experimental study was carried out to evaluate the effects of aqueous and methanol extracts of Hedyotis diffusa which has long been used for cancer treatment in oriental medicines on the induction of apoptotic cell death in human lymphoid leukemia cell line, HL-60. Methods: Cells were treated with various concentrations (200 to $0.4{\mu}g$) and periods (6 to 30 hr) of $H_2O$ and methanol extracts of Hedyotis diffusa. Then, cells were tested for viability by MTT assay. Cells wrere treated with $200{\mu}g/ml$ of methanol extract fork various periods. Genomic DNA was isolated, separated, on 1.5% agarose gels, stained with ethidium bromide and visualized under UV light. Cells were treated with $200{\mu}g/ml$ of each extract for 16 hr. Then, cells were treated with Hoechst dye 33342 and observed by fluorescence microscopy. Cells were treated with various doses of each for 12 hr and $100{\mu}g/ml$ of methanol extract for various periods. Lysate from the cells used to measure the activity of Caspase-1 and-3 proteases by using fluorogenic peptide substrates including acetyl-YVAD-AMC and acetyl-DEVD-AMC, respectively. Cells were treated with $200{\mu}g/ml$ of each extract for various periods. Cell lysates were immunoprecipated with anti-JNKl antibodies. The immune complex was reacted with $32^p-ATP$ and c-Jun as a substrate. The phosphotransferase activity of JNKI was measured by using PhosphoImage analyzer (Fuji Co., Japan). Nuclear extracts were isolated and incubated with oligonucleotide probe of $NF-{\kappa}B$. Transcriptional activation of ${\kappa}B$ was measured by using EMSA and visualized by PhosphoImage analyzer (Fuji Co, Japan). Cell lysates were prepared and analyzed by Western blotting with anti-Bc12 antibodies and anti-Bax antibodies. Cells were pretreated with various doses of methanol extract for 2 hr. Then, the extract was removed by centrifugation. Cells were resuspended with RPMI-1640 media containing 0.3% agarose, 10% FBS, overlayred onto bottom layer agarose and incubated at $CO_2$ incubator for 6 days. The number of colony was counted under light microscopy ($\time100$). Results: The death of HL-60 cells was markedly induced by the addition of methanol extract of Hedyotis diffusa in a dose and time-dependent manners. The apoptotic characteristic ladder pattern of DNA strand break was observed in death of HL-60 cells. In addition, it was shown nucleus chromatin condensation and fragmentation under Hoechst staining. Therefore, Hedyotis diffusa extract-induced death of HL-60 cells is mediated by apoptotic signaling processes. The activity of Caspase 3-like proteases remained in a basal level in HL-60 cells treated with aqueous extract of Hedyotis diffusa. However, it was markedly increased in HL-60 cells treated with methanol extract of Hedyotis diffusa. In addition, the phosphotransferase activity of JNKl was increased in HL-60 cells treated with methanol extract of Hedyotis diffusa. Furthermore, the activation of transcriptional activator, $NF-{\kappa}B$ was markedly induced by methanol extract of Hedyotis diffusa. Anti-apoptotic Bc12 was cleaved into 23Kda fragment by treatment of methanol extract of Hedyotis diffusa. However, expression of proapoptotic Bax protein was increased by treatment of methanol extract of Hedyotis diffusa in a time-dependent manner. Furthermore, methanol extract markedly inhibited the colony forming efficiency of HL-60 cells in semisolid agar culture. Conclusions: Above results suggest that methanol extract of Hedyotis diffusa induces the apoptotic death of human leukemic HL-60 cells via activations of Caspase-3 proteases, JNKI, transcriptional activator $NF-{\kappa}B$, In addition, our results also suggest that methanol extract of Hedyotis diffusa reduces the malignant potential of HL-60 cells via down regulation of colony forming effciency through cleavage of Bc12 as well as induction of Bax.

  • PDF

Effect of Phytoncide on Porphyromonas gingivalis (P. gingivalis에 대한 피톤치드의 항균효과)

  • Kim, Sun-Q;Shin, Mi-Kyoung;Auh, Q-Schick;Lee, Jin-Yong;Hong, Jung-Pyo;Chun, Yang-Hyun
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.2
    • /
    • pp.137-150
    • /
    • 2007
  • Trees emit phytoncide into atmosphere to protect them from predation. Phytoncide from different trees has its own unique fragrance that is referred to as forest bath. Phytoncide, which is essential oil of trees, has microbicidal, insecticidal, acaricidal, and deodorizing effect. The present study was performed to examine the effect of phytoncide on Porphyromonas gingivalis, which is one of the most important causative agents of periodontitis and halitosis. P. gingivalis 2561 was incubated with or without phytoncide extracted from Hinoki (Chamaecyparis obtusa Sieb. et Zucc.; Japanese cypress) and then changes were observed in its cell viability, antibiotic sensitivity, morphology, and biochemical/molecular biological pattern. The results were as follows: 1. The phytoncide appeared to have a strong antibacterial effect on P. gingivalis. MIC of phytoncide for the bacterium was determined to be 0.008%. The antibacterial effect was attributed to bactericidal activity against P. gingivalis. It almost completely suppressed the bacterial cell viability (>99.9%) at the concentration of 0.01%, which is the MBC for the bacterium. 2. The phytoncide failed to enhance the bacterial susceptibility to ampicillin, cefotaxime, penicillin, and tetracycline but did increase the susceptibility to amoxicillin. 3. Numbers of electron dense granules, ghost cell, and vesicles increased with increasing concentration of the phytoncide, 4. RT-PCR analysis revealed that expression of superoxide dismutase was increased in the bacterium incubated with the phytoncide. 5. No distinct difference in protein profile between the bacterium incubated with or without the phytoncide was observed as determined by SDS-PAGE and immunoblot. Overall results suggest that the phytoncide is a strong antibacterial agent that has a bactericidal action against P. gingivalis. The phytoncide does not seem to affect much the profile of the major outer membrane proteins but interferes with antioxidant activity of the bacterium. Along with this, yet unknown mechanism may cause changes in cell morphology and eventually cell death.