• Title/Summary/Keyword: Protein A

Search Result 29,963, Processing Time 0.051 seconds

Identification of Limiting Amino Acids and Determination of Requirement of Total Sulfur-containing Amino Acids in a Low Protein Diet in Young Chicks. (어린병아리에서 저단백질사료내 제한아미노산의 규명과 함유황아미노산의 요구량 결정)

  • Chee, Kew-Mahn
    • Korean Journal of Poultry Science
    • /
    • v.11 no.1
    • /
    • pp.1-12
    • /
    • 1984
  • Since a 13% dietary protein level is generally accepted as a standard in evaluating net protein utilization values of protein sources in chicks, limiting amino acids a 13% protein basal diet containing 15% isolated soy-protein as the only source of dietary protein, were identified. Of such amino acids as methionine, lysine, threonine and tryptophan added to the basal diet singly or as a combination, methionine appeared as the only limiting amino acid for optimum growth of the chicks. When the requirement of total sulfur-containing acids (TSAA) was estimated as the point at which the dose-response curve intersected a line representing the plateau for maximum performance, the TSAA requirements for maximum growth and feed intake were 4.73% and 3.73% of dietary protein, respectively. The values, expressed in terms of TSAA intake, required for maximum weight gain, feed intake and gain/feed ratio were 167.1, 136.8 and 159.1 mg/bird/day, respectively.

  • PDF

Fabrication of Disposable Protein Chip for Simultaneous Sample Detection

  • Lee, Chang-Soo;Lee, Sang-Ho;Kim, Yun-Gon;Oh, Min-Kyu;Hwang, Taek-Sung;Rhee, Young-Woo;Song, Hwan-Moon;Kim, Bo-Yeol;Kim, Yong-Kweon;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.455-461
    • /
    • 2006
  • In this study, we have described a method for the fabrication of a protein chip on silicon substrate using hydrophobic thin film and microfluidic channels, for the simultaneous detection of multiple targets in samples. The use of hydrophobic thin film provides for a physical, chemical, and biological barrier for protein patterning. The microfluidic channels create four protein patterned strips on the silicon surfaces with a high signal-to-noise ratio. The feasibility of the protein chips was determined in order to discriminate between each protein interaction in a mixture sample that included biotin, ovalbumin, hepatitis B antigen, and hepatitis C antigen. In the fabrication of the multiplexed assay system, the utilization of the hydrophobic thin film and the microfluidic networks constitutes a more convenient method for the development of biosensors or biochips. This technique may be applicable to the simultaneous evaluation of multiple protein-protein interactions.

Identification and Characterization of a RecA-like Protein Induced by DNA Damaging Agents in Fluorescent Pseudomonas sp.

  • Kim, Ok-Bong;Lim, Chae-Kwang;Kim, Si-Wouk;Park, Jong-Kun;Yoon, Seong-Myeong;Lee, Jung-Sup
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.383-388
    • /
    • 1998
  • A RecA-like protein (RecAps) was identified from fluorescent Pseudomonas sp. and the inducible nature of the protein was characterized in detail. It was shown by dose-response and time-course experiments using two DNA damaging agents, nalidixic acid and mitomycin-C, that the cellular level of RecAps protein was increased 3-8 fold compared to that of the control. The most effective doses of nalidixic acid and mitomycin-C for the protein induction were $30{\mu}g/ml$ and $0.3{\mu}g/ml$ at the treatment time point of 150 min, respectively. The enhanced level of RecAps protein was gradually decreased to the control level after 10 hr in normal medium. Interestingly, the cellular level of RecAps protein was increased by the same DNA damaging agents even when cell growth was completely inhibited by treatment with $170{\mu}g/ml$ of chloramphenicol, an inhibitor of protein synthesis, suggesting that new protein synthesis is not required for the induction of RecAps. All these results suggest that a typical S0S repair function driven by RecA-like protein is conserved in Pseudomonas sp. cells as in E, coli.

  • PDF

A bioinformatics approach to characterize a hypothetical protein Q6S8D9_SARS of SARS-CoV

  • Md Foyzur Rahman;Rubait Hasan;Mohammad Shahangir Biswas;Jamiatul Husna Shathi;Md Faruk Hossain;Aoulia Yeasmin;Mohammad Zakerin Abedin;Md Tofazzal Hossain
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.3.1-3.10
    • /
    • 2023
  • Characterization as well as prediction of the secondary and tertiary structure of hypothetical proteins from their amino acid sequences uploaded in databases by in silico approach are the critical issues in computational biology. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), which is responsible for pneumonia alike diseases, possesses a wide range of proteins of which many are still uncharacterized. The current study was conducted to reveal the physicochemical characteristics and structures of an uncharacterized protein Q6S8D9_SARS of SARS-CoV. Following the common flowchart of characterizing a hypothetical protein, several sophisticated computerized tools e.g., ExPASy Protparam, CD Search, SOPMA, PSIPRED, HHpred, etc. were employed to discover the functions and structures of Q6S8D9_SARS. After delineating the secondary and tertiary structures of the protein, some quality evaluating tools e.g., PROCHECK, ProSA-web etc. were performed to assess the structures and later the active site was identified also by CASTp v.3.0. The protein contains more negatively charged residues than positively charged residues and a high aliphatic index value which make the protein more stable. The 2D and 3D structures modeled by several bioinformatics tools ensured that the proteins had domain in it which indicated it was functional protein having the ability to trouble host antiviral inflammatory cytokine and interferon production pathways. Moreover, active site was found in the protein where ligand could bind. The study was aimed to unveil the features and structures of an uncharacterized protein of SARS-CoV which can be a therapeutic target for development of vaccines against the virus. Further research are needed to accomplish the task.

Effects of Dietary Animal Protein and Plant Protein on Iron Bioavailability in Young Korean Women (동물성과 식물성단백질이 한국인 젊은여성의 체내 철분이용도에 미치는 영향)

  • 곽충실
    • Journal of Nutrition and Health
    • /
    • v.27 no.5
    • /
    • pp.451-459
    • /
    • 1994
  • This study was performed to investigate the effect of sources of protein on iron bioavailability in 10 healthy young Korean women. The 18-day metabolic study consisted of a 6-day adaptation period, 6-day moderate protein(60g protein/day, 18mg Fe/day) and 6-day high protein period(90g protein/day, 18mg Fe/day). During the moderate and high protein period, 5 subjects were fed the high plant protein meals(80% plant protein). Fecal excretion of dietary iron was significantly higher(p<0.05) in high protein high plant diet group(HPP, 9.48$\pm$1.61mg/day) than in high protein high animal diet group (HPA, 14.40$\pm$0.89mg/day). Apparent absorption and bioavailability of iron was also significantly higher(p<0.10) in HPA(40.7$\pm$5.3%, 6.46$\pm$1.61mg/day) than in HPP(14.4$\pm$5.3%, 2.39$\pm$0.89mg/day). But there was no significant difference between the high animal protein group and high plant protein group in moderate protein period. Serum iron concentration and transferrin saturation increased as animal protein intake increased, from 106.0$\pm$5.1ug/이 and 30.6$\pm$1.5% for MPA to 129.1$\pm$6.7ug/이 and 37.1$\pm$1.3% for HPA. Statistically positive correlations were shown not only between the level of dietary heme iron and apparent absorption(r=0.95, p<0.05), but also between serum iron concentration and apparent absorption(r=0.64, p<0.05). Negative iron balance was shown in two subjects fed the moderate protein meals. These results suggest that recommanded dietary allowances of iron may be under the need to maintain the positive balance, and iron bioavaliability increase by only high level of animal protein intake.

  • PDF

Optimal Dietary Protein and Lipid Levels for Growth of Long-nosed Barbel, Hemibarbus longirostris

  • Kim, Yi-Oh;Hwang, Gyu-Deok;Lee, Sang-Min
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.311-316
    • /
    • 2009
  • A 10-week feeding trial with four dietary protein levels (22%, 32%, 42% and 52%) and two dietary lipid levels (8% and 17%) was conducted to investigate the optimum dietary protein and lipid levels for growth of long-nosed barbel fingerlings. Survival rate of fish was not affected by either the dietary protein or the dietary lipid level. Weight gain and feed efficiency were affected by the dietary protein level (P<0.01), but not by the lipid level, and increased with the dietary protein level at the both lipid levels. Weight gain and feed efficiency of fish fed the 52% protein diets with 8-17% dietary lipids were not significantly different from those of fish fed the 42% protein diets with 8-17% dietary lipids and 32% protein diet with 17% dietary lipid. Daily feed intake of fish was not affected by either dietary protein or dietary lipid level. Protein efficiency ratio and protein retention rate of fish fed the 32% protein diet with 17% dietary lipid were significantly higher than those of fish fed the 52% protein diets with 8-17% dietary lipids. Moisture content of fish fed the diets containing 8% lipid were higher than those of fish fed the diets containing 17% dietary lipid at each protein level. Crude lipid content of fish fed the diets containing 17% dietary lipid were higher than that of fish the fed the diet containing 8% dietary lipid at each protein level. The results of this study indicated that 32% protein and 17% lipid could be the optimum dietary level for growth of juvenile long-nosed barbel.

Effects of Artificial Digestive Juice on the Antitumor-Immunity Activity of Protein-bound Polysaccharide from Ganoderma lucidum (인공소화액이 영지 단백 다당체의 항암-면역 활성에 미치는 영향)

  • 유정실;현진원;김하원;심미자;김병각
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.347-353
    • /
    • 2000
  • To examine influence of artificial digestive juice on the antitumor activity of Ganoderma lucidum-A(GL-A), protein-bound polysaccharide from Ganoderma lucidum, we compared the digested protein-bound polysaccharide with undigested one both on immunopotentiating activity and influence of digestive juices. Protein-bound polysaccharide GL-B was obtained by digesting the antitumor component GL-A with artificial digestive Juices in vitro. When GL-A was administered orally to sarcoma 180 tumor-bearing ICR mice, the life prolonging effect was exhibited in a dose dependent manner Not only GL-A but GL-B increased the production of colony forming unit (CFU) to 10- and 8-fold of that of the control, respectively. Both of the protein-bound polysaccharides also showed the secretion of nitric oxide in RAW 264.7 cell lines to 3.5-and 3.7-fold of that of the control, respectively: GL-A activated components of the alternative complement pathway, whereas GL-B did not. In humoral immunity GL-A increased the activity of alkaline phosphatase in differentiated B cells to 3 times and GL-B to 4 times of that of the control. These results showed that the artificial digestive juices had no influence on the antitumor activity of the protein-bound polysaccharide from Ganoderma lucidum and that its immunomodulating activity retained after treatment with artificial digestive juice. And this provides a basis of the protein-bound polysaccharide of Ganoderma lucidum as an peroral anticancer drug.

  • PDF

Overproduction of Recombinant Human VEGF (Vascular Endothelial Growth Factor) in Chinese Hamster Ovary Cells

  • Lee, Seong-Baek;Park, Jeong-Soo;Lee, Seung-Hee;Park, Jun-Ho;Yu, Sung-Ryul;Kim, Hee-Chan;Kim, Dong-Jun;Byun, Tae-Ho;Baek, Kwang-Hee;Ahn, Young-Joon;Yoon, Jae-Seung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.183-187
    • /
    • 2008
  • Vascular endothelial growth factors (VEGFs) are a family of proteins that mediate angiogenesis. $VEGF_{165}$ is a VEGF-A isoform and has been extensively studied owing to its potential use in therapeutic angiogenesis. This study established Chinese hamster ovary (CHO) cells overexpressing recombinant human $VEGF_{165}$ $(rhVEGF_{165})$ protein. The production rate of the established CHO cells was over 80mg/l of $rhVEGF_{165}$ protein from a 7-day batch culture process using a 7.5-l bioreactor with a 5-l working volume and serum-free medium. The $rhVEGF_{165}$ protein was purified to homogeneity from the culture supernatant using a two-step chromatographic procedure that resulted in a 48% recovery rate. The purified $rhVEGF_{165}$ protein was a glycosylated homodimeric protein with a higher molecular weight (MW) than the protein expressed from insect cells, suggesting that the glycosylation of the $rhVEGF_{165}$ protein in CHO cells differed from that in insect cells. The purified $rhVEGF_{165}$ protein in this study was functionally active with a half-maximal effective concentration of 3.8ng/ml and specific activity of $2.5{\times}10^5U/mg$.

Generation of Protein Lineages with new Sequence Spaces by Functional Salvage Screen

  • Kim, Geun-Joong;Cheon, Young-Hoon;Park, Min-Soon;Park, Hee-Sung;Kim, Hak-Sung
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.77-80
    • /
    • 2001
  • A variety of different methods to generate diverse proteins, including random mutagenesis and recombination, are currently available, and most of them accumulate the mutations on the target gene of a protein, whose sequence space remains unchanged. On the other hand, a pool of diverse genes, which is generated by random insertions, deletions, and exchange of the homologous domains with different lengths in the target gene, would present the protein lineages resulting in new fitness landscapes. Here we report a method to generate a pool of protein variants with different sequence spaces by employing green fluorescent protein (GFP) as a model protein. This process, designated functional salvage screen (FSS), comprises the following procedures: a defective GFP template expressing no fluorescence is firstly constructed by genetically disrupting a predetermined region(s) of the protein, and a library of GFP variants is generated from the defective template by incorporating the randomly fragmented genomic DNA from E. coli into the defined region(s) of the target gene, followed by screening of the functionally salvaged, fluorescence-emitting GFPs. Two approaches, sequence-directed and PCR-coupled methods, were attempted to generate the library of GFP variants with new sequences derived from the genomic segments of E. coli. The functionally salvaged GFPs were selected and analyzed in terms of the sequence space and functional property. The results demonstrate that the functional salvage process not only can be a simple and effective method to create protein lineages with new sequence spaces, but also can be useful in elucidating the involvement of a specific region(s) or domain(s) in the structure and function of protein.

  • PDF

In silico annotation of a hypothetical protein from Listeria monocytogenes EGD-e unfolds a toxin protein of the type II secretion system

  • Maisha Tasneem;Shipan Das Gupta;Monira Binte Momin;Kazi Modasser Hossain;Tasnim Binta Osman;Fazley Rabbi
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.7.1-7.11
    • /
    • 2023
  • The gram-positive bacterium Listeria monocytogenes is an important foodborne intracellular pathogen that is widespread in the environment. The functions of hypothetical proteins (HP) from various pathogenic bacteria have been successfully annotated using a variety of bioinformatics strategies. In this study, a HP Imo0888 (NP_464414.1) from the Listeria monocytogenes EGD-e strain was annotated using several bioinformatics tools. Various techniques, including CELLO, PSORTb, and SOSUIGramN, identified the candidate protein as cytoplasmic. Domain and motif analysis revealed that the target protein is a PemK/MazF-like toxin protein of the type II toxin-antitoxin system (TAS) which was consistent with BLASTp analysis. Through secondary structure analysis, we found the random coil to be the most frequent. The Alpha Fold 2 Protein Structure Prediction Database was used to determine the three-dimensional (3D) structure of the HP using the template structure of a type II TAS PemK/MazF family toxin protein (DB ID_AFDB: A0A4B9HQB9) with 99.1% sequence identity. Various quality evaluation tools, such as PROCHECK, ERRAT, Verify 3D, and QMEAN were used to validate the 3D structure. Following the YASARA energy minimization method, the target protein's 3D structure became more stable. The active site of the developed 3D structure was determined by the CASTp server. Most pathogens that harbor TAS create a crucial risk to human health. Our aim to annotate the HP Imo088 found in Listeria could offer a chance to understand bacterial pathogenicity and identify a number of potential targets for drug development.