• Title/Summary/Keyword: Protective tunnel

Search Result 16, Processing Time 0.027 seconds

CFD-Based Overpressure Evaluation Inside Expansion Chamber-Applied Protective Tunnels Subjected to Detonation of High Explosives (확장챔버를 적용한 방호터널 내부의 CFD 해석 기반 폭발압력 평가)

  • Shin, Jinwon;Pang, Seungki
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.25-34
    • /
    • 2023
  • This paper presents a computational fluid dynamics (CFD) analysis to investiagate the effect of expansion chamber on overpressure reduction in protective tunnels subjected to detonation of high explosives. A commercial CFD code, Viper::Blast, was used to model the blast waves in a protective tunnel with a length of 160 m, width of 8.9 m and height of 7.2 m. Blast scenarios and simulation matrix were establihsed in consideration of the design parameters of expansion chamber, including the chamber lengths of 6.1 m to 12.1 m, widths of 10.7 m to 97 m, length to width ratios of 0.0 to 5.0, heights of 8.0 m and 14.9 m, and ratios of chamber to tunnel width of 1.2 to 10.9 m. A charge weight of TNT of 1000 kg was used. The mesh sizes of the numerical model of the protective tunnel were determined based on a mesh convergence study. A parametric study based on the simulation matrix was performed using the proposed CFD tunnel model and the optimized shape of expansion chamber of the considered tunnel was then proposed based on the numerical results. Design recommendations for the use of expansion chamber in protective tunnel under blast loads to reduce the internal overpressures were finally provided.

Blast Overpressure Evaluation for Blast Valves in Protective Tunnels with Rectangular-Shaped Tunnel Entrances (각형 출입구를 갖는 방호터널의 방폭밸브에 미치는 폭압 평가)

  • Pang, Seungki;Shin, Jinwon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.79-90
    • /
    • 2021
  • This paper presents a study to reduce the effect of blast pressure on the blast valves installed in protection tunnels, where the shape of the tunnel entrance and the blast pocket is optimized based on the predetermined basic shape of the protective tunnels. The reliability of the numerical tunnel models was examined by performing analyses of mesh convergence and overpressure stability and with comparison to the data in blast-load design charts in UFC 3-340-02 (DoD, 2008). An optimal mesh size and a stabilized distance of overpressure were proposed, and the numerical results were validated based on the UFC data. A parametric study to reduce the blast overpressures in tunnel was conducted using the validated numerical model. Analysis was performed applying 1) the entrance slope of 90, 75, 60, and 45 degrees, 2) two blast pockets with the depth 0.5, 1.0, and 1.5 times the tunnel width, 3) the three types of curved back walls of the blast pockets, and 4) two types of the upper and lower surfaces of the blast pockets to the reference tunnel model. An optimal solution by combining the analysis results of the tunnel entrance shape, the depth of the blast pockets, and the upper and lower parts of the blast pockets was provided in comparison to the reference tunnel model. The blast overpressures using the proposed tunnel shape have been reduced effectively.

A study on the improvement of the protective shield construction method and explosion-proof tube performance for tunnel blasting (터널 발파에 대한 방호쉴드 공법 및 방폭튜브 성능 개선 연구)

  • Sang-Hwan Kim;Soo-Jin Lee;Jung-Nam Kwon;Dong-gyun Yoo;Yong-Woo Kim;Kwang-Eun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.285-303
    • /
    • 2023
  • Interest in building underground spaces is increasing for the creation of downtown infrastructure and efficient space utilization. A representative method of utilizing underground space is a tunnel, and in addition to road tunnels, the construction of utility tunnels such as power conduits and utility conduits is gradually increasing. The current basic tunnel construction method can be divided into NATM (New Austrian Tunnelling Method) and TBM (Tunnel Boring Machine). The NATM is a reliable method, but it is accompanied by vibration and noise due to blasting. In the case of the TBM excavation method, there are disadvantages in terms of construction period and construction cost, but it is possible to improve economic feasibility by introducing appropriate complementary methods. In this study, a blasting method was develop using the NATM after TBM pre-excavation using the protective shield method. This is a method that compensates for the disadvantages of each tunnel construction method, and is expected to reduce construction costs, blasting vibration, and noise. In order to review the performance of the developed method, an experiment was conducted to evaluate the performance of explosion-proof tube to which a protective shield scale model was applied, and the impact of blasting vibration of the protective shield method was analyzed.

A Development of New Device for Bow Thruster Tunnel Grids (바우 스러스터 터널 그리드 개선을 위한 연구)

  • Kim, Sung-Pyo;Park, Jae-Jun;Jun, Dong-Su;Kim, Yong-Soo;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.304-312
    • /
    • 2006
  • For protection of the thruster against mechanical damage and reduction of tunnel resistance at ship forward speed, the tunnel grids are normally installed. Some of ship operators however, have a strong distrust of the protective function of the tunnel grids and so they do not want to install the protective grids for higher thruster efficiency. Since the grids should be installed at very close to the side shell as far as possible in due consideration of flow direction to minimize additional resistance induced by tunnel openings, it has been too hard and time consuming work to install the grids on the curved and chamfered tunnel entrances considering its relatively low resistance reduction effect. DSME (Daewoo Shipbuilding & Marine Engineering Co., Ltd) developed a substituting device named TG (Tunnel Guides) for bow thruster tunnel grids which is characterized by higher resistance reduction, higher thruster efficiency and easy to installation. This paper provides the principle idea of the TG with short history of the development using CFD calculations and model experiments in MOERI (former KRISO).

Dynamic responses of shield tunnel structures with and without secondary lining upon impact by a derailed train

  • Yan, Qixiang;Li, Binjia;Deng, Zhixin;Li, Bin
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.741-750
    • /
    • 2018
  • The aim of this study was to investigate the mechanical responses of a high-speed railway shield tunnel subjected to impact by a derailed train, with emphasis on the protective effect of the secondary lining. To do so, the extended finite element method was used to develop two numerical models of a shield tunnel including joints and joint bolts, one with a cast-in-situ concrete secondary lining and one without such a lining. The dynamic responses of these models upon impact were analyzed, with particular focus on the distribution and propagation of cracks in the lining structures and the mechanical responses of the joint bolts. The numerical results showed that placing a secondary lining significantly constricted the development of cracking in the segmental lining upon the impact load caused by a derailed train, reduced the internal forces on the joint bolts, and enhanced the safety of the segmental lining structure. The outcomes of this study can provide a numerical reference for optimizing the design of shield tunnels under accidental impact loading conditions.

A Study on Efficient Design Technique of RPUM Steel Pipes (RPUM 강관의 효율적인 설계기법에 관한 연구)

  • Kim, Jung-Su;Park, Tae-Soon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1354-1363
    • /
    • 2006
  • Until now, NATM(New Austrian Tunneling Method) has been increasingly developed based on concept of making use of ground as support. Also, NATM in its essence is a method of risk based on monitoring behaviour of tunnel. This Monitoring is irreplaceable for the quality construction of tunnel, and safety of tunnel itself. Pre-reinforcement ahead of a tunnel face using long steel pipes in NATM, known as the RPUM(Reinforced Protective Umbrella Method), is the auxiliary method to sustain the stability of a tunnel face and reduce the ground settlements. Since design of RPUM has been dependent on the empirical design, it is necessary to develop the improved design methods. In this study, to understand behaviour of steel pipes, it is monitored displacement of tunnel crown, axial force of rock bolt, displacement and axial stress of steel pipes. Also, in order to clarify the mechanical behaviour and RPUM effects, 3-Dimensional numerical analysis is performed that various cases of different parameter combinations including original length and repeated length of steel pipes, installation width and angle, repeated length of steel. In the results of comparison monitoring with analysis, it is suggested more economical and efficient design technique than empirical design methods.

  • PDF

Stability Analysis on the Intersection Area of Subway Tunnels by Observational Method (계측에 의한 지하철터널 교차부의 안정성 검토)

  • Kim Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.71-79
    • /
    • 2005
  • The stability of the intersection area of two tunnels is analyzed by observational method. The depth from ground surface to the intersected area is shallow and the geology around the area consists of soil and/or weathered rock. The tunnel is supported by reinforced protective umbrella method with 12 m long 3-layer steel-pipes and the intersected area is additionally reinforced with 6 m long rockbolts. The measured displacements are converged and mechanical stability of the intersected area of two tunnels is confirmed; tunnel arch settles to 6-7 mm at the crown and the sidewalls converges to about 5 mm. So based on the displacement measurements, the supporting system for the tunnel intersection proves to be effective to not only reduce the deformation of tunnels but also maintain the stability of tunnels.

Evaluation on Reinforcing Effect of Inclined System Bolting by Model Tests and Numerical Analysis (모형시험 및 수치해석을 통한 경사 시스템 록볼트의 보강효과 분석)

  • Lee, Jea-Dug;Kim, Byoung-Il;Yoo, Wan-Kyu;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1529-1539
    • /
    • 2013
  • Recent case studies in Japan have shown that rockbolts are commonly installed at an oblique angle to the excavation direction of the tunnel, instead of at a right angle, due to restriction of the working space. In particular, in the case of expansion in an existing tunnel, the working space can be very small, due to the large protective structures necessary to operate within an existing tunnel. In this case, where both the current use of the existing tunnel, and the reinforcement of the ground around the tunnel are required, the effects of installation angles and patterns of rockbolts are important factors in the design process. Therefore, in this study, a total number of 24 model tests are performed, to investigate the reinforcing effects of system bolting installed obliquely from the excavation direction of the tunnel, by changing the installation angle of bolts, longitudinal distance, and bonded length of bolts. The model test results indicate that the relaxed load ratio decreases, with the increase of both the bonded lengths and the number of the installed bolts, resulting in the decrease of the supported area by one bolt. Two-dimensional numerical analysis, which considered the reinforcement effect of inclined system bolting as the change of engineering properties near the tunnel, demonstrated that the deflection patterns at the tunnel crown in the numerical simulations, show a similar tendency to those measured in the model tests.

Numerical analysis of pre-reinforced zones in tunnel considering the time-dependent grouting performance (터널 사전보강영역의 경시효과를 고려한 수치해석 기법에 관한 연구)

  • Song, Ki-Il;Kim, Joo-Won;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2007
  • Auxiliary support systems such as the reinforced protective umbrella method have been applied before tunnel excavation to increase ground stiffness and to prevent the large deformation. However, determination procedure of geotechnical parameters along the construction sequence contains various errors. This study suggests a method to characterize the time-dependent behavior of pre-reinforced zones around the tunnel using elastic waves. Experimental results show that shear strength as well as elastic wave velocities increase with the curing time. Shear strength and strength parameters can be uniquely correlated to elastic wave velocities. Obtained results from the laboratory tests are applied to numerical simulation of tunnel considering its construction sequences. Based on numerical analysis, initial installation part of pre-reinforcement and portal of tunnel are critical for tunnel stability. Result of the time-dependent condition is similar to the results of for $1{\sim}2$ days of the constant time conditions. Finally, suggested simple analysis method combining experimental and numerical procedure which considering time-dependent behavior of pre-reinforced zone on tunnel would provide reliable and reasonable design and analysis for tunnel.

  • PDF

A Study on the Development and the Practical Approach for Repair Method of RC Structures Subjected to the Chemical Attack (화학적 침식을 받은 콘크리트구조물의 보수기술 개발과 실용화연구)

  • Moon, Han-Young;Shin, Dong-Gu;Kwon, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.155-162
    • /
    • 2005
  • This paper presents an invetigation into the cause of deterioration of wet surrounding RC structures subjected to checmical attacks such as sewage. The antibacterial-reforming agent is developed after determining the permeability of the RC structure. After application of the anitbacterial-reforming agent through SEM, the permeability, compressive strength properties and the micro-structure of the concrete were evaluated for durability. In addition, the antibacterial-reforming agent was combined with a protective coating for the wet surrounding RC structure and evaluated for durability. The combined effect of the antibacterial-reforming agent and the protective coating were evaluated in field tests in both sewer system and tunnel sites.