• Title/Summary/Keyword: Protective Structures

Search Result 181, Processing Time 0.025 seconds

A Study on the Development and Application of Perilla Oil Based Compound Wax Agent for Preserving Outdoor Metal Sculpture: A Case Study on Iron Sculptures (들기름 기반 야외 금속 조형물 보존용 혼합 Wax의 개발 및 적용성에 관한 연구: 철제 조형물 중심으로)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.33 no.2
    • /
    • pp.121-130
    • /
    • 2017
  • The currently used wax agents for preserving outdoor metal structures, despite their advantages, have disadvantages such as low endurance and reliability. These wax agents are easily damaged by acid rain, dust, moisture in the air, yellow dust, and air pollutants, resulting in corrosion within a short period after the initial conservation treatment. In addition, aged wax can also exhibit changes in the color or gloss, and also give a sense of difference in the surface. Given these existing problems, it is necessary to develop improved materials for metal preservation. Therefore, this study analyzed the characteristics and applications of the existing wax coating agents in order to identify their disadvantages and to develop a better material for metal preservation. In this regard, this study developed a perilla oil based compound wax and conducted experiments to test its endurance. The new compound wax agent was exposed to outdoor and acid rain conditions: it showed four times and 1.5 times the endurance of the existing wax agents in outdoor and acid rain conditions, respectively. In addition, the new agent seems to be more durable and protective as evidenced by the chromaticity, polish maintenance, and contact angle results. Further, although it is 1.3-1.8 times thicker than the existing agents, the new agent shows a more even surface. Based on these findings, it can be concluded that the new compound wax agent based on perilla oil is a better alternative to the existing was coating agents.

Evaluation on Reinforcing Effect of Inclined System Bolting by Model Tests and Numerical Analysis (모형시험 및 수치해석을 통한 경사 시스템 록볼트의 보강효과 분석)

  • Lee, Jea-Dug;Kim, Byoung-Il;Yoo, Wan-Kyu;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1529-1539
    • /
    • 2013
  • Recent case studies in Japan have shown that rockbolts are commonly installed at an oblique angle to the excavation direction of the tunnel, instead of at a right angle, due to restriction of the working space. In particular, in the case of expansion in an existing tunnel, the working space can be very small, due to the large protective structures necessary to operate within an existing tunnel. In this case, where both the current use of the existing tunnel, and the reinforcement of the ground around the tunnel are required, the effects of installation angles and patterns of rockbolts are important factors in the design process. Therefore, in this study, a total number of 24 model tests are performed, to investigate the reinforcing effects of system bolting installed obliquely from the excavation direction of the tunnel, by changing the installation angle of bolts, longitudinal distance, and bonded length of bolts. The model test results indicate that the relaxed load ratio decreases, with the increase of both the bonded lengths and the number of the installed bolts, resulting in the decrease of the supported area by one bolt. Two-dimensional numerical analysis, which considered the reinforcement effect of inclined system bolting as the change of engineering properties near the tunnel, demonstrated that the deflection patterns at the tunnel crown in the numerical simulations, show a similar tendency to those measured in the model tests.

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

Effects of Carbon Tetrachloride on Structures in Hepatocytes Following DMN Induced Hepatotoxicity (사염화탄소 투여가 Dimethylnitrosamine의 급성중독 간세포의 구조에 미치는 영향)

  • Kang, Young-Chun;Nam, Hae-Joo;Kim, Dong-Suk;Choi, Won-Hee;Lee, Tae-Sook
    • Journal of Yeungnam Medical Science
    • /
    • v.8 no.2
    • /
    • pp.84-94
    • /
    • 1991
  • The purpose of this study was to evaluate the influence of high does carbon tetrachloride($CCl_4$) on the hepatotoxic effect of dimethylnitrosamine(DMN) which induces acute hemorrhagic necrosis in liver. Rats were injected intraperitoneally DMN dissolved in physiologic saline by a dose of 40mg/kg. For changes related to $CCl_4$ pretreatment, rats were injected intraperitoneally $CCl_4$ dissolved in olive oil by a dose of 0.4mg/kg, and then injected DMN. The livers were extracted from the rats 3, 6, 12, 24, 48, 72, and 120 hours after $CCl_4$ and/or DMN injection. Liver tissues were examined with light and electron microscopes. The results were summarized as follows ; Light microscopic findings : Severe centrilobular hemorrhagic necrosis developed from 12 hours after injection of DMN and continued to 120 hours. On injection of DMN after $CCl_4$ pretreatment, Massive necrosis occurred early. But active regenerative changes were produced in 24 hours. In 120 hours, the liver recovered in almost normal appearance. The degree of necrosis in pretreated group was similar to that in DMN injection only, and the time of recovery was faster in preteated group. Electron microscopic findings ; The early change was mainly disorganization of RER in DMN injection, and clumping and vesicular dilatation of ER in injection of $CCl_4$. In pretreatment group the early change was similar in appearance with $CCl_4$ group, but severer in degree. According to the results, it was revealed that acute toxic effect of DMN was recovered more rapidly in pretreatment group. Thus it was suggested that $CCl_4$ had protective effect in DMN hepatotoxicity.

  • PDF

The Characteristics analysis of a Flux-lock Type Fault Current Limiter according to the Winding Directions for Power Grid (전력계통 적용을 위한 결선방향에 따른 자속구속형 한류기의 특성 분석)

  • Lee, Mi-Yong;Park, Jeong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5879-5884
    • /
    • 2013
  • With the rapid industrialization and economical development, the electricity demands of the industrial facilities and densely populated large cities are continuing to increase in Korea. The increase in the power consumption requires the extension of power facilities, but it is difficult to secure spaces for equipment installation in the limited space of urban areas. In addition, the 154 kV or 345 kV transmission systems in Korea has a short transmission distance, and are connected to one another in network structures that ensure the high reliability and stability of power supply. This structure reduces the impedance during the fault in power system, and increases the magnitude of in the short circuit fault current. The superconducting fault current limiter (SFCL) was devised to effectively address these existing problems. The SFCL is a new-concept eco-friendly protective device that ensures fast operation and recovery time for the fault current and does not need additional fault detection devices. Therefore, many studies are being conducted around the world. In this paper, based on the wiring method the initial fault current characteristics, current limiting characteristics, according to the incident angle and the change in inductance current limiting characteristics were analyzed in a multifaceted methods.

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions (지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Sung-Wook;Moon, Jae-Heum;Kim, Won-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.339-349
    • /
    • 2020
  • Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

Effect of Light Wavelengths on the Mycelial Browning of Lentinula edodes Strain Sanjo 701ho (광 파장이 표고 품종 산조 701호 균사의 갈변에 미치는 영향)

  • Seo, Dong-Seok;Koo, Chang-Duck
    • The Korean Journal of Mycology
    • /
    • v.47 no.1
    • /
    • pp.63-73
    • /
    • 2019
  • Mycelial browning, which protects the organism from contamination and moisture loss, is essential for sawdust cultivation of Lentinula edodes. The effects of light and light wavelengths on the mycelial browning of the L. edodes Sanjo 701ho strain, and the characteristics of its brown hyphae, were investigated. After the mycelia were cultured on potato dextrose agar medium under fluorescent lamps covered with colored cellophane filters (red, green, and blue) or under light emitted diodes (LED), with wavelengths ranging from 400 to 700 nm (far-red, red, green, and blue), for 14 h per day for 40 days, the mycelial browning rate was measured. The wavelength of fluorescent lamps, which range from 300 to 1,100 nm, was reduced to 360 to 1,022 nm with the use of three colored cellophane filters and the photosynthetic photon flux density was reduced by 42 to 71 % depending on the light wavelength. The browning rate by colony area of mycelia exposed to light was at an average of 64 %, whereas, that of unexposed mycelia was only 5 %. The browning rate was 0.02 % in far-red, 1.5 % in red, 53.8 % in green, 57.3 % in blue, and 64.0 % in fluorescent light. The white mycelia were resilient with actively growing hyphae, filled with cytoplasm, and thin cell walls less than $1{\mu}m$ thick. Conversely, the brown mycelia possessed dead, hard hyphal structures without cytoplasm, but with approximately $2-4{\mu}m-thick$-thick cell walls. In conclusion, lights of varying wavelengths, especially short-wavelength LEDs, are effective for forming dead, brown mycelia of L. edodes, thus, forming a protective functional layer for its living white mycelia.

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility (저심도 지중 수소저장시설에서의 수소가스 누출에 따른 불포화 지반의 수리-역학적 거동 예측 연구)

  • Go, Gyu-Hyun;Jeon, Jun-Seo;Kim, YoungSeok;Kim, Hee Won;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.107-118
    • /
    • 2022
  • The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.

Improvement of existing drainage system for leakage treatment in exiting underground structures (운영중인 지하구조물의 누수처리를 위한 유도배수공법의 개선)

  • Kim, Dong-Gyou;Yim, Min-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.669-683
    • /
    • 2017
  • The objective of this study is to propose a modification of the previously proposed drainage system for catching the partial leakage of underground concrete structures. Two techniques were proposed for applying the drainage system only to the leaking parts. One was for conveying leaking groundwater to the collection point in the drainage system and the other was for conveying the collected groundwater to the primary drainage system of the underground concrete structure. Four waterproofing materials for conveying leaking groundwater to the catchment point of the drainage system, Durkflex made of porous rubber material, KE-45 silicone adhesive with super strong adhesion, Hotty-gel made of polymeric materials and general silicone adhesive were evaluated for waterproofing performance. Hotty-gel only showed perfect waterproof performance and the other three waterproof materials leaked. The modified drainage system with Hotty-gel and drainage pipe with fixed saddle to convey the leaking groundwater from the catchment point to the primary drainage system were tested on the concrete retaining wall. The waterproof performance and the drainage performance were evaluated by injecting 1,000 ml of water in the back of the modified drainage system at the 7-day, 14-day, 21-day, 28-day, 2-month and 3-month. There was no problem in waterproof performance and drainage performance of the modified drainage system during 3 months. In order to evaluate the construction period and construction cost of the modified drainage system, it was compared with the existing leaching repair method in surface cleaning stage, leakage treatment stage, and protective barrier stage. Total construction period and construction cost were compared in considering the contents of work, repair material, construction equipment, working time, and total number of workers. As a result of comparing and analyzing in each construction stage, it was concluded that the modified drainage system could save construction period and construction cost compared to the existing leaching repair method.

Exploring on the Defense Strategies against Hervivory of Broad-leaved Tree Species Growing in Taean-gun, Chuncheongnam-do (충남 태안군에서 생육중인 활엽수종의 초식에 대한 방어전략 탐색)

  • Kim, Gab-Tae;Choo, Gab-Cheul;Lyu, Dong-Pyo;Um, Tae-Won
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • To explore on the defense strategies against hervivory of 67 broadleaved tree species, morphological characteristics of the leaf, leaf domatia structure and the number, herbivores insects and mites on the leaves, collected from the trees growing in Taean-gun, Chuncheongnam-do were investigated. 46 broadleaved tree species(68.7%) had the domatia structures, and 21 species including Quercus salicina and Magnolia grandiflora did not. 31 species including Juglans mandshurica and Carpinus laxiflora reveals tuft type, 12 species including Quercus dentata and Corylus heterophylla reveals pocket+tuft type, and 2 species, Sorbus alnifolia and Prunus yedoensis does pocket type, and Viburnum odoratissimum var. awabuki does pouch type. Domatia number per leaf proves the highest figures, 23.4/leaf for Quercus dentata. Plant defense strategies using leaf lower-surface trichomes of Magnolia grandiflora reveals dense villous, those of Populus alba and Vitis vinifera reveals dense pilose, that of Elaeagnus umbellata does dense scaly hairs, that of Pueraria lobata does dense strigose. Plant defense strategies using extrafloral nectaries were adapted 23 tree species(34.3%). Observed examples are Prunus tomentosa, Ficus carica, Viburnum dilatatum and Carpinus laxiflora. Predatory mites were observed on the leaves of 40 tree species(59.7%), and mean values of predatory mites was highest values 23.4/leaf in Quercus dentata. Minute arthropods destroying the leaf of broadleaved trees. are such as Periphyllus californiensis, P. viridis, Diaspididae sp., gall mites, thrips, and total numbers observed were odered gall mites, Diaspididae sp., aphids and thrips. Natural enemies of these hervivores arthropods are such as predatory mites, Chilocorus rubidus, Coccinella septempunctata and the nymph, Aphidius ervi. These results indicate that defense strategies including protective mutualisms may be frequent in the temperate broadleave trees.