• Title/Summary/Keyword: Prostaglandin D2

Search Result 135, Processing Time 0.037 seconds

Prostaglandin D2 contributes to cisplatin-induced neuropathic pain in rats via DP2 receptor in the spinal cord

  • Li, Yaqun;Kim, Woong Mo;Kim, Seung Hoon;You, Hyun Eung;Kang, Dong Ho;Lee, Hyung Gon;Choi, Jeong Il;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a major reason for stopping or changing anticancer therapy. Among the proposed pathomechanisms underlying CIPN, proinflammatory processes have attracted increasing attention. Here we assessed the role of prostaglandin D2 (PGD2) signaling in cisplatin-induced neuropathic pain. Methods: CIPN was induced by intraperitoneal administration of cisplatin 2 mg/kg for 4 consecutive days using adult male Sprague-Dawley rats. PGD2 receptor DP1 and/or DP2 antagonists were administered intrathecally and the paw withdrawal thresholds were measured using von Frey filaments. Spinal expression of DP1, DP2, hematopoietic PGD synthase (H-PGDS), and lipocalin PGD synthase (L-PGDS) proteins were analyzed by western blotting. Results: The DP1 and DP2 antagonist AMG 853 and the selective DP2 antagonist CAY10471, but not the DP1 antagonist MK0524, significantly increased the paw withdrawal threshold compared to vehicle controls (P = 0.004 and P < 0.001, respectively). Western blotting analyses revealed comparable protein expression levels in DP1 and DP2 in the spinal cord. In the CIPN group the protein expression level of L-PGDS, but not of H-PGDS, was significantly increased compared to the control group (P < 0.001). Conclusions: The findings presented here indicate that enhanced PGD2 signaling, via upregulation of L-PGDS in the spinal cord, contributes to mechanical allodynia via DP2 receptors in a cisplatin-induced neuropathic pain model in rats, and that a blockade of DP2 receptor activation may present a novel therapeutic target for managing CIPN.

Imperatorin Suppresses Degranulation and Eicosanoid Generation in Activated Bone Marrow-Derived Mast Cells

  • Jeong, Kyu-Tae;Lee, Eujin;Park, Na-Young;Kim, Sun-Gun;Park, Hyo-Hyun;Lee, Jiean;Lee, Youn Ju;Lee, Eunkyung
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.421-427
    • /
    • 2015
  • Imperatorin has been known to exert many biological functions including anti-inflammatory activity. In this study, we investigated the inhibitory effects of imperatorin on the production of inflammatory mediators in mouse bone marrow-derived mast cells (BMMC). Imperatorin inhibited degranulation and the generation of eicosanoids (leukotriene $C_4$ ($LTC_4$) and prostaglandin $D_2$ ($PGD_2$) in IgE/antigen (Ag)-stimulated BMMC. To elucidate the molecular mechanism involved in this process, we investigated the effect of imperatorin on intracellular signaling in BMMC. Biochemical analyses of the IgE/Ag-mediated signaling pathway demonstrated that imperatorin dramatically attenuated degranulation and the production of 5-lipoxygenase-dependent $LTC_4$ and cyclooxygenase-2-dependent $PGD_2$ through the inhibition of intracellular calcium influx/phospholipase $C{\gamma}1$, cytosolic phospholipase $A_2$/mitogen-activated protein kinases and/or nuclear factor-${\kappa}B$ pathways in BMMC. These results suggest that the effects of imperatorin on inhibition of degranulation and eicosanoid generation through the suppression of multiple steps of IgE/Ag-mediated signaling pathways would be beneficial for the prevention of allergic inflammation.

Simultaneous HPLC Analysis of Arachidonic Acid Metabolites in Biological Samples with Simple Solid Phase Extraction

  • Kim, Hyung-Gun;Huh, Young-Na;Park, Kun-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.779-786
    • /
    • 1998
  • A reversed-phase high-performance liquid chromatogrphy (RP-HPLC) has been developed to analyze the metabolites of arachidonic acid based on the specificities of ultraviolet absorption of these various metabolites and is sensitive to the nanogram level. This procedure makes it possible to extract complex mixtures of eicosanoids efficiently with a single step and to analyze them simultaneously by RP-HPLC from biological samples using octadesylsilyl silica extraction column and $PGB_2$ as an internal standard. The cyclooxygenase products {prostaglandin $(PG)D_2,\;PGE_1,\;PGE_2,\;PGF_{1{\alpha}},\;PGF{2{\alpha}},\;6-keto-PGF_{1{\alpha}},$ and thromboxane $B_2(TXB_2)}$ and lipid peroxidation product, isoprostanes, of arachidonic acid were monitored by one isocratic HPLC system at 195 nm wavelength. The lipoxygenase products ${leukotriene(LT)B_4,\;LTC_4,\;LTD_4,$ and 5-hydroxyeicosatetraenoic acid (5-HETE), 12-HETE, 15-HETE} were measured by another isocratic HPLC system at 280 nm for LTs and 235 nm for HETEs. This method provides a simple and reliable way to extract and assess quantitatively the final arachidonic acid metabolites.

  • PDF

Induction of Heme Oxygenase-1 By 15-Deoxy-Delta12,14-Prostaglandin J2 Is Mediated Through Activation of Transcription Factor Nrf2 in Mcf-7 Cells

  • Kim, Eun-Hee;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.180-180
    • /
    • 2003
  • Peroxisome proliferator-activated receptor gamma (PPAR-gamma), a member of the nuclear hormone receptor superfamily, is involved in the suppression of growth of several types of tumors such as liposarcoma, cancers of breast, prostate, and colon, possibly through induction of cell cycle arrest and/or apoptosis.(omitted)

  • PDF

4'-O-β-D-Glucosyl-5-O-Methylvisamminol Attenuates Pro-Inflammatory Responses and Protects against Oxidative Damages

  • Yoo, Ok-Kyung;Keum, Young-Sam
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.381-385
    • /
    • 2019
  • We attempted to examine anti-inflammatory and anti-oxidant effects of 4'-O-${\beta}$-D-glucosyl-5-O-methylvisamminol (GOMV), the first epigenetic inhibitor of histone phosphorylation at Ser10. While GOMV did not affect the viability of murine macrophage RAW 264.7 cells, it significantly suppressed lipopolysaccharide (LPS)-induced generation of prostaglandin $E_2$ ($PGE_2$) and nitric oxide (NO) through transcriptional inhibition of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). GOMV also scavenged free radicals in vitro, increased NF-E2-related factor 2 (NRF2), and activated antioxidant response element (ARE), thereby resulting in the induction of phase II cytoprotective enzymes in human keratinocyte HaCaT cells. Finally, GOMV significantly protected HaCaT cells against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative intracellular damages. Together, our results illustrate that GOMV possesses anti-inflammatory and anti-oxidant activity.

Saucerneol F, a New Lignan Isolated from Saururus chinensis, Attenuates Degranulation via Phospholipase Cγ1 Inhibition and Eicosanoid Generation by Suppressing MAP Kinases in Mast Cells

  • Lu, Yue;Son, Jong-Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.526-531
    • /
    • 2012
  • During our on-going studies to identify bioactive compounds in medicinal herbs, we found that saucerneol F (SF), a naturally occurring sesquilignan isolated from Saururus chinensis (S. chinensis), showed in vitro anti-inflammatory activity. In this study, we examined the effects of SF on the generation of 5-lipoxygenase (5-LO) dependent leukotriene $C_4$ ($LTC_4$), cyclooxygenase-2 (COX-2) dependent prostaglandin $D_2$ ($PGD_2$), and on phospholipase $C{\gamma}1$ ($PLC{\gamma}1$)-mediated degranulation in SCF-induced mouse bone marrow-derived mast cells (BMMCs). SF inhibited eicosanoid ($PGD_2$ and $LTC_4$) generation and degranulation dose-dependently. To identify the molecular mechanisms underlying the inhibition of eicosanoid generation and degranulation by SF, we examined the effects of SF on the phosphorylation of $PLC{\gamma}1$, intracellular $Ca^{2+}$ influx, the translocation of cytosolic phospholipase $A_2$ ($cPLA_2$) and 5-LO, and on the phosphorylation of MAP kinases (MAPKs). SF was found to reduce intracellular $Ca^{2+}$ influx by inhibiting $PLC{\gamma}1$ phosphorylation and suppressing the nuclear translocations of $cPLA_2$ and 5-LO via the phosphorylations of MAPKs, including extracellular signal-regulated protein kinase-1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Taken together, these results suggest that SF may be useful for regulating mast cell-mediated inflammatory responses by inhibiting degranulation and eicosanoid generation.

Curcumin Inhibits the Activation of Immunoglobulin E-Mediated Mast Cells and Passive Systemic Anaphylaxis in Mice by Reducing Serum Eicosanoid and Histamine Levels

  • Li, Xian;Lu, Yue;Jin, Ye;Son, Jong-Keun;Lee, Seung Ho;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • Curcumin is naturally occurring polyphenolic compound found in turmeric and has many pharmacological activities. The present study was undertaken to evaluate anti-allergic inflammatory activity of curcumin, and to investigate its inhibitory mechanisms in immunoglobulin E (IgE)/Ag-induced mouse bone marrow-derived mast cells (BMMCs) and in a mouse model of IgE/Ag-mediated passive systemic anaphylaxis (PSA). Curcumin inhibited cyclooxygenase-2 (COX-2) dependent prostaglandin $D_2$ ($PGD_2$) and 5-lipoxygenase (5-LO) dependent leukotriene $C_4$ ($LTC_4$) generation dose-dependently in BMMCs. To probe the mechanism involved, we assessed the effects of curcumin on the phosphorylation of Syk and its downstream signal molecules. Curcumin inhibited intracellular $Ca^{2+}$ influx via phospholipase $C{\gamma}1$ ($PLC{\gamma}1$) activation and the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear factor-${\kappa}B$ (NF-${\kappa}B$) pathway. Furthermore, the oral administration of curcumin significantly attenuated IgE/Ag-induced PSA, as determined by serum $LTC_4$, $PGD_2$, and histamine levels. Taken together, this study shows that curcumin offers a basis for drug development for the treatment of allergic inflammatory diseases.

Paricalcitol attenuates lipopolysaccharide-induced inflammation and apoptosis in proximal tubular cells through the prostaglandin E2 receptor EP4

  • Hong, Yu Ah;Yang, Keum Jin;Jung, So Young;Chang, Yoon Kyung;Park, Cheol Whee;Yang, Chul Woo;Kim, Suk Young;Hwang, Hyeon Seok
    • Kidney Research and Clinical Practice
    • /
    • v.36 no.2
    • /
    • pp.145-157
    • /
    • 2017
  • Background: Vitamin D is considered to exert a protective effect on various renal diseases but its underlying molecular mechanism remains poorly understood. This study aimed to determine whether paricalcitol attenuates inflammation and apoptosis during lipopolysaccharide (LPS)-induced renal proximal tubular cell injury through the prostaglandin $E_2$ ($PGE_2$) receptor EP4. Methods: Human renal tubular epithelial (HK-2) cells were pretreated with paricalcitol (2 ng/mL) for 1 hour and exposed to LPS ($1{\mu}g/mL$). The effects of paricalcitol pretreatment in relation to an EP4 blockade using AH-23848 or EP4 small interfering RNA (siRNA) were investigated. Results: The expression of cyclooxygenase-2, $PGE_2$, and EP4 were significantly increased in LPS-exposed HK-2 cells treated with paricalcitol compared with cells exposed to LPS only. Paricalcitol prevented cell death induced by LPS exposure, and the cotreatment of AH-23848 or EP4 siRNA offset these cell-protective effects. The phosphorylation and nuclear translocation of p65 nuclear factor-kappaB ($NF-{\kappa}B$) were decreased and the phosphorylation of Akt was increased in LPS-exposed cells with paricalcitol treatment. AH-23848 or EP4 siRNA inhibited the suppressive effects of paricalcitol on p65 $NF-{\kappa}B$ nuclear translocation and the activation of Akt. The production of proinflammatory cytokines and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were attenuated by paricalcitol in LPS exposed HK-2 cells. The cotreatment with an EP4 antagonist abolished these anti-inflammatory and antiapoptotic effects. Conclusion: EP4 plays a pivotal role in anti-inflammatory and antiapoptotic effects through Akt and $NF-{\kappa}B$ signaling after paricalcitol pretreatment in LPS-induced renal proximal tubule cell injury.