• Title/Summary/Keyword: Prostaglandin $E_2

Search Result 835, Processing Time 0.041 seconds

Extracts of Allium fistulosum Attenuates Pro-Inflammatory Action in the Lipopolysaccharide-Stimulated BV2 Microglia Cells (Lipopolysaccharide에 의한 BV2 세포의 염증 반응에 대한 파 추출물의 저해 활성)

  • Park, Shin-Hyoung;Kim, Jung-In;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.796-804
    • /
    • 2011
  • Microglia are central nervous system (CNS)-resident professional macrophages that function as the principal immune cells responding to pathological stimulations in the CNS. Activation of microglia, induced by various pathogens, protects neurons and maintains homeostasis in the CNS, but severe activation causes inflammatory responses secreting various neurotoxic molecules such as nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines. Allium fistulosum, a member of the onion family, is mainly cultivated for consumption, as well as medicinal use in Oriental medicine. It has been reported that A. fistulosum has various biological effects such as anti-oxidant, anti-platelet aggregation, anti-fungus and anti-cholesterol synthesis, however there has been no research about the anti-inflammatory effects of A. fistulosum extracts. In this study, it was undertaken to explore the functions of A. fistulosum as a suppressor of neuronal inflammation by using BV2 microglia cells. As a result, it was found that four kinds of extracts of A. fistulosum effectively reduced the expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) at both mRNA and protein levels, and also attenuated pro-inflammatory cytokines such as tumor necrosis alpha (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$) and interleukin-6 (IL-6) at the mRNA level in BV2 stimulated by lipopolysaccharide (LPS). In addition, the extracts of A. fistulosum attenuated the release of NO markedly, as well as resulting in slight decreases of TNF-${\alpha}$ and IL-6 production, the effects of which were most significant when treated with ethyl alcohol extract from the whole A. fistulosum. In conclusion, the data indicated that the anti-inflammatory actions of A. fistulosum against BV2 microglia cells is through the down-regulation of iNOS, COX2 and pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-6, and these effects are expected to help in the protection of nerve tissues by suppressions of neuronal inflammation in various neurodegenerative diseases.

Anti-oxidative and Anti-inflammatory Activities of Fermented Turmeric (Curcuma longa L.) by Rhizopus oryzae (Rhizopus oryzae으로 발효한 울금의 항산화 및 항염효과)

  • Kim, Eun-Ju;Song, Bit-Na;Jeong, Da-Som;Kim, So-Young;Cho, Yong-Sik;Park, Shin-Young
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1315-1323
    • /
    • 2017
  • Turmeric is a rhizomatous herbaceous perennial plant (Curcuma longa (CL)) of the ginger family, Zingiberaceae. A yellow-pigmented fraction isolated from the rhizomes of CL contains curcuminoids belonging to the dicinnamoyl methane group. Curcumin is an important active ingredient responsible for the biological activity of CL. However, CL is not usually used as a food source due to its bitter taste. The present study was designed to determine the effect of the CL fermented by Rhizopus oryzae (FCL) on pro-inflammatory factors such as nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), tumor necrosis factor alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 cell line. The cell viability was determined by MTT assay. To evaluate the anti-inflammatory effect of FCL 80% EtOH extracts, IL-6 and $TNF-{\alpha}$ were measured by ELISA kit. Also, the amount of $NO/PGE_2/NF-{\kappa}B$ was measured using the $NO/PGE_2/NF-{\kappa}B$ detection kit and the iNOS/COX-2 expression was measured by Western blotting. The results showed that the FCL reduced NO, $PGE_2$, iNOS, COX-2, $NF-{\kappa}B$, IL-6 and $TNF-{\alpha}$ production without cytotoxicity. These results suggest that FCL extracts may be a developed the functional food related to anti-inflammation due to the significant effects on inflammatory factors.

Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과)

  • Lee, Young-Kyung;Kim, Chul Hwan;Jeong, Dae Won;Lee, Ki Won;Oh, Young Taek;Kim, Jeong Il;Jeong, Jin-Woo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.565-573
    • /
    • 2022
  • Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory and antioxidative activities of Lotus Root extract (LRE) in Porphyromonas gingivalis derived lipopolysaccharide (LPS-PG)-stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by LRE treatment in a dose-dependent manner. LRE treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor-κB (NF-κB) in LPS-PG-stimulated HGF-1 cells. In addition, one of phase II enzyme, NAD(P)H quinone dehydrogenase (NQO)-1, and its transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), were significantly induced by LRE treatment. Consequently, these results suggest that LRE ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, and activating NQO-1/Nrf2 antioxidant response element signaling pathways in HGF-1 cells.

Effect of garlic (Allium sativum L.) stems on inflammatory cytokines, iNOS and COX-2 expressions in Raw 264.7 cells induced by lipopolysaccharide (Lipopolysaccharide로 유도된 Raw 264.7 세포에서 마늘대 추출물(Allium sativum L. Stems)의 염증성 사이토카인 및 iNOS, COX-2 발현에 대한 효과 검증)

  • Cho, Yong Hun;Kim, Hyeon Jeong;Kim, Dong In;Jang, Jae Yoon;Kwak, Jae Hoon;Shin, Yu Hyeon;Cho, Yeon Gje;An, Bong Jeon
    • Food Science and Preservation
    • /
    • v.22 no.4
    • /
    • pp.613-621
    • /
    • 2015
  • In this study, the anti-oxidant and anti-inflammatory activities of water extract (ASSW) and 70% ethanol extract (ASSE) of Allium sativum L. stems were investigated using Raw 264.7 cells induced by lipopolysaccharide (LPS). ABTS radical scavenging activities of ASSW and ASSE at $1000{\mu}g/mL$ concentration were 96.9% and 97.8%, respectively. In order to investigate the potential anti-inflammatory effects of ASSW and ASSE, nitric oxide (NO), pro-inflammatory cytokines, interleukin-6 (IL-6), and tumor necrosis factor including ${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and prostaglandin-E2 (PGE2) were measured. ASSW and ASSE at $100{\mu}g/mL$ concentration showed inhibitory effects against NO production by 18% and 23%, respectively. Production of IL-$1{\beta}$ and IL-6 after treatment with ASSW and ASSE at $100{\mu}g/mL$ decreased by approximately 28% and 15% for ASSW and 17% and 12% for ASSE, respectively. In addition, production of TNF-${\alpha}$ after treatment of $100{\mu}g/mL$ of ASSW and ASSE decreased by 24% and 23%, respectively. In addition, the treatment of $100{\mu}g/mL$ of ASSW and ASSE showed inhibitory expressions against PGE2 by 45.47% and 33.87%, respectively. These results suggested that ASSE showed greater inhibitory activity than that of the ASSW by the suppression of inflammatory mediators, including NO, IL-6, TNF-${\alpha}$ and PGE2 production, and the expressions of iNOS and COX-2 in macrophages. In conclusion, ASSW and ASSE may have some ancillary effects on inflammatory factors as potential anti-inflammatory agents.

The Study of Anti-inflammatory Effect of Suryeon-hwan Water Extract in RAW 264.7 Cells (대식세포에서 수련환(茱連丸) 물추출물의 항염증작용에 관한 연구)

  • Yoon, Yeo-Hwan;Kim, Sung-Bae;Kang, Ok-Hwa;Mun, Su-Hyun;Seo, Yun-Soo;Yang, Da-Wun;Kang, Da-Hye;Wi, Gyeong;Lim, Jae-Soo;Kim, Ma-Ryong;Kwak, Nam-Won;Kong, Ryong;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.125-132
    • /
    • 2014
  • Objectives : Suryeon-hwan (SRH) exhibits potent anti-inflammatory activity with an unknown mechanism. However, there has been a lack of studies regarding the effects of SRH on the inflammatory activities and effector inflammatory disease mechanism about macrophage before is not known. So, the investigation focused on whether SRH inhibited nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions, as well as the expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells. Methods : Cells were treated with 200 ng/mL of LPS 30 min prior to the addition of SRH. Cell viability was measured by MTS assay. The production of nitric oxide (NO) was determined by reacting cultured medium with Griess reagent. The content of level of cytokines (PGE, IL-6) in media from LPS-stimulated Raw 264.7 cells was analyed by ELISA kit. The expression of COX-2, iNOS and MAPKs was investigated by Western blot, RT-PCR. Results : We found that SRH inhibited LPS-induced NO, $PGE_2$ and IL-6 productions as well as the expressions of iNOS and COX-2. Furthermore, SRH suppressed the LPS-induced phosphorylation of MAPK and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation. Conclusions : These results suggest that SRH has inhibitory effects on LPS-induced $PGE_2$, NO, and IL-6 production, as well as the expressions of iNOS and COX-2 in the murine macrophage. These inhibitory effects occur through blockades on the phosphorylation of MAPKs following activation.

Effect of Resistant Starch on the Large Bowel Environment and Plasma Lipid in Rats with Loperamide-Induced Constipation (저항전분 투여가 Loperamide 유도 변비 쥐의 대장환경과 혈청지질에 미치는 효과)

  • Sin, Hyun-Ju;Kim, Kwang-Ok;Kim, Sung-Hong;Kim, Young-Ah;Lee, Hye-Sung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.5
    • /
    • pp.684-691
    • /
    • 2010
  • The present study was conducted to evaluate the effect of resistant starch (RS) on the large bowel function and plasma lipids in rats with constipation induced by Loperamide. Animals were divided into six groups: normal control-5% cellulose, constipation-5% cellulose, constipation-5% pectin, constipation-5% RS-type 2 (RS2), constipation-8% RS2 and constipation-5% RS type 3 (RS3) groups, and fed experimental diets for five weeks. The results from RS groups were compared with those from other dietary fiber groups. The groups supplemented with RS3 or high level of RS2 showed significantly increased counts of bifidobacteria in the cecum than the other groups. The production of total short chain fatty acids in the cecal contents was significantly high in pectin, RS3 and high RS2 groups. The pH in the cecal contents of the RS supplemented groups was significantly decreased compared with the cellulose supplemented groups. The production of prostaglandin E2 in the colon mucus of the RS groups was higher than the normal group; however, it was significantly decreased compared to the cellulose or pectin supplemented constipated groups. The thickness of the mucus layer and the production of mucus from epithelial cells were significantly increased in RS3 group compared to the constipated cellulose group. Supplementation of resistant starch significantly elevated the ratio of HDL-cholesterol to total cholesterol and significantly lowered plasma atherogenic index compared with cellulose or pectin supplementation in constipated rats. The results of the present study demonstrated that resistant starch supplementation may help in improving the large bowel environment by stimulation of bifidobacterial proliferation, reduction of pH and inflammation factor and by increased production of mucus. It has also been found that an additional health benefit is improvement in lipid levels of serum.

Anti-inflammatory effect potentials of ethanol extracts from fermentated Caryopteris incana by Lactobacillus plantarum on induced to LPS with Raw 264.7 cell (LPS로 유도된 Raw 264.7 cell에서 Lactobacillus plantarum 발효가 층꽃나무(Caryopteris incana) 에탄올 추출물의 염증반응에 미치는 영향)

  • Park, Mi-Jeong;Park, Hye-Jin;Lee, Eun-Ho;Jung, Hee-Young;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.141-150
    • /
    • 2018
  • In this study, the inflammation of ethanol extracts from Caryopteris incana (CI) and fermented C. incana (FCI) on induced to lipopolysaccharide with Raw 264.7 cell was tested. The composition profile of L. plantarum was changed by fermentation, and confirmed by HPLC analysis. We performed the 3-[4,5-dimethylthiazol]-2-yl]-2,5-diphenyltetrazolium bromide assay to evaluate the toxicity of CI and FCI extracts. In cell viability, cell toxicity was not shown at 5, 10 and $15{\mu}g/mL$ of CI extracts and 10, 20, 30 and $40{\mu}g/mL$ of FCI extracts. The results of inducible nitric oxide synthase and cyclooxygenase-2 protein production were confirmed to be inhibitory in a concentration-dependent manner, respectively. Additionally, protein expression of nitric oxide and prostaglandin $E_2$ by CI and FCI extracts were also inhibited in a concentration-dependent manner. In the result of pro-inflammatory cytokine, $15{\mu}g/mL$ concentration of CI extracts was showed tumar necrosis factor $(TNF)-{\alpha}$ (57.3%), interleukin (IL)-6 (35.2%), and $IL-1{\beta}$ (48.0%), respectively. And $40{\mu}g/mL$ of FCI extracts was showed $TNF-{\alpha}$ (34.6%), IL-6 (32.1%), and $IL-1{\beta}$ (30.0%), respectively. These results suggest that FCI extracts showed better effect of anti-inflammatory than CI extracts. Therefore, it was found that both CI and FCI can be used as an excellent material for the development of new anti-inflammatory resource.

Effects Unripe and Ripe Rubus coreanus Miquel on Peritoneal Macrophage Gene Expression Using cDNA Microarray Analysis (미숙과와 성숙과 복분자의 섭취가 복강 Macrophages의 유전자 발현에 미치는 영향)

  • Lee, Jung Eun;Cho, Soo-Muk;Kim, Jin;Kim, Jung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1552-1559
    • /
    • 2013
  • Rubus coreanus Miquel (RCM) has been used as one of the Korean traditional medicines for prostate health. In addition, recent studies have reported that RCM reduced chronic inflammatory diseases such as cancer, and rheumatoid arthritis. Therefore, in this study, we investigated the effects of unripe and ripe RCM on inflammationrelated gene expressions in LPS-stimulated mouse peritoneal macrophages. Mice were fed with 2% unripe RCM (U2), 10% unripe RCM (U10), 2% ripe RCM (R2), and 10% ripe RCM (R10) for 8 weeks. Peritoneal macrophages were isolated and stimulated with LPS then proinflammatory mediators (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6), and prostaglandin E2 ($PGE_2$) productions were assessed. Moreover, gene expression profiles were analyzed by cDNA microarray method. Unripe and ripe RCM significantly reduced TNF-${\alpha}$ production but only unripe RCM decreased IL-$1{\beta}$ and IL-6 production. RCM intake significantly reduced inflammatory-related gene expressions such as arachidonate 5-lipoxygenase, interleukin 11, and nitric oxide synthase 2. Furthermore, unripe and ripe RCM significantly decreased ceruloplasmin, tissue plasminogen activator, thrombospondin 1, and vascular endothelial growth factor A expression which modulates symptoms of chronic inflammatory diseases. RCM intake also significantly increased hypoxia inducible factor 3, alpha which is the negative regulators of hypoxia-inducible gene expression. Furthermore, only unripe RCM reduced chemokine (C-C motif) ligand 8, chemokine (C-X-C motif) ligand 14, and phospholipase A2 expression. In this study, we showed that RCM had anti-inflammatory effects by suppression of pro-inflammatory mediator expressions and may reduce chronic inflammatory disease progress through regulation of gene expressions. These findings suggest that RCM might be used as a potential functional material to reduce chronic inflammatory responses.

In vitro Antioxidant and Anti-inflammatory Effects of Ethanol Extracts from Sprout of Evening Primrose (Oenothera laciniata) and Gooseberry (Actinidia arguta) (달맞이순과 다래순 에탄올 추출물의 in vitro 항산화효과 및 항염증효과)

  • Kwak, Chung Shil;Lee, Ji Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.207-215
    • /
    • 2014
  • To investigate the biological benefits of Korean traditional vegetables, anti-oxidative and anti-inflammatory effects of ethanol extracts from blanched and dried sprouts of evening primrose (Oenothera laciniata, OL) and gooseberry (Actinidia arguta, AA) were measured. Total polyphenol and flavonoid contents of OL were higher than those of AA; OL contained 60.4 mg tannic acid/g dry weight and 31.9 mg rutin/g dry weight, while AA contained 33.0 mg tannic acid/g dry weight and 20.3 mg rutin/g dry weight. The $IC_{50}$ value for DPPH radical scavenging activity was $58.2{\mu}g/mL$ for OL ethanol extract and $122.1{\mu}g/mL$ for AA ethanol extract. The reducing power upon $500{\mu}g/mL$ of ethanol extract treatment was as strong as $52.1{\mu}g$ ascorbate eq./mL for OL and $45.3{\mu}g$ ascorbate eq./mL for AA. Regarding anti-inflammatory effects, inhibition rate against 5-lipoxygenase (LOX) and cyclooxygenase (COX)-2 activities were 29.5% and 79.5% for OL, as well as 11.5% and 39.1% for AA, respectively at a concentration of $250{\mu}g/mL$. Lipopolysaccaride ($1{\mu}g/mL$)-treated RAW 264.7 macrophage cells subjected to OL ethanol extract at various concentrations ($0{\sim}25{\mu}g/mL$) showed significantly reduced synthesis of nitrite oxide (NO), prostaglandin (PG) E2, and IL-6 in a dose-dependent manner without cytotoxicity, although TNF-${\alpha}$ synthesis was not affected. In conclusion, both OL and AA sprouts showed strong antioxidative activity, whereas OL showed very strong anti-inflammatory activity via effective reduction of NO, PGE2, and IL-6 synthesis in LPS-activated macrophage cells.

Effect of Microbial Phytase in Low Phosphorus and Calcium Level Diet on the Performance and Nutrient Digestibility in Laying Hens (인과 칼슘의 수준이 낮은 산란계 사료 내 미생물 Phytase의 첨가가 생산성 및 영양소 소화율에 미치는 영향)

  • Min B.J.;Kwon O.S.;Lee W.B.;Son K.S.;Hong J.W.;Yang S.J.;Moon T.H.;Kim I.H.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • This Study was conducted to investigate the effects of microbial phytase in low phosphirus and calcium level diet on the performance and nutrient digestibility in laying hens. One hundred ninety two, 50 wks old, ISA brown commerical layers were used for 12 weeks feeding trial after 7-d adjustment period. Four dietary treatments included CON(control; Co.), P2 ($0.06\%$ Natuphos, BASF) and P3 ($0.06\%$ PHOSMAX, GENOFOCUS). Ca and available P concentrations of P1, P2 and P3 were 90 and $50\%$ of NRC recommecdations to accentuate difference in response to phytase availability. In whole period, egg production was not affected by treatments. At 12 weeks, egg weight was significantly increased in adding phytase treatments (P<0.05). Egg shell thickness was increased in P1, P2 and P3 treatments compared with control (P<0.05) at 9 weeks. Ca concentration of serum tended to decrease in P1 treatment without significant difference (P>0.05). Ca and P concentrations of tibia were higher in layers fed dietary phyrase than those fed control diet without significant difference (P>0.05). Digestibilities of DM, N and ash were improved in P1 treatment compared with P2 and P3 treatments (P<0.05). Ca and P digestibilities were the highest in P2 treatment (P>0.05), but was not significant difference between control and P1 treatments.