DOI QR코드

DOI QR Code

Effects Unripe and Ripe Rubus coreanus Miquel on Peritoneal Macrophage Gene Expression Using cDNA Microarray Analysis

미숙과와 성숙과 복분자의 섭취가 복강 Macrophages의 유전자 발현에 미치는 영향

  • Lee, Jung Eun (Dept. of Home Economics Education, ChungAng University) ;
  • Cho, Soo-Muk (Functional Food & Nutrition Division, Rural Development Administration) ;
  • Kim, Jin (Dept. of Food & Nutrition, Sookmyung Women's University) ;
  • Kim, Jung-Hyun (Dept. of Home Economics Education, ChungAng University)
  • 이정은 (중앙대학교 가정교육과) ;
  • 조수묵 (농촌진흥청 국립농업과학원 한식세계화연구단 기능성식품과) ;
  • 김진 (숙명여자대학교 식품영양학과) ;
  • 김정현 (중앙대학교 가정교육과)
  • Received : 2013.06.12
  • Accepted : 2013.07.22
  • Published : 2013.10.31

Abstract

Rubus coreanus Miquel (RCM) has been used as one of the Korean traditional medicines for prostate health. In addition, recent studies have reported that RCM reduced chronic inflammatory diseases such as cancer, and rheumatoid arthritis. Therefore, in this study, we investigated the effects of unripe and ripe RCM on inflammationrelated gene expressions in LPS-stimulated mouse peritoneal macrophages. Mice were fed with 2% unripe RCM (U2), 10% unripe RCM (U10), 2% ripe RCM (R2), and 10% ripe RCM (R10) for 8 weeks. Peritoneal macrophages were isolated and stimulated with LPS then proinflammatory mediators (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6), and prostaglandin E2 ($PGE_2$) productions were assessed. Moreover, gene expression profiles were analyzed by cDNA microarray method. Unripe and ripe RCM significantly reduced TNF-${\alpha}$ production but only unripe RCM decreased IL-$1{\beta}$ and IL-6 production. RCM intake significantly reduced inflammatory-related gene expressions such as arachidonate 5-lipoxygenase, interleukin 11, and nitric oxide synthase 2. Furthermore, unripe and ripe RCM significantly decreased ceruloplasmin, tissue plasminogen activator, thrombospondin 1, and vascular endothelial growth factor A expression which modulates symptoms of chronic inflammatory diseases. RCM intake also significantly increased hypoxia inducible factor 3, alpha which is the negative regulators of hypoxia-inducible gene expression. Furthermore, only unripe RCM reduced chemokine (C-C motif) ligand 8, chemokine (C-X-C motif) ligand 14, and phospholipase A2 expression. In this study, we showed that RCM had anti-inflammatory effects by suppression of pro-inflammatory mediator expressions and may reduce chronic inflammatory disease progress through regulation of gene expressions. These findings suggest that RCM might be used as a potential functional material to reduce chronic inflammatory responses.

본 연구에서는 미숙과와 성숙과의 복분자 섭취에 의한 쥐복강 대식세포의 염증반응을 조사하였다. 8주간 농도별 미숙과와 성숙과 복분자 식이를 섭취시킨 후 복강대식세포를 분리한 다음, LPS로 염증반응을 유도하여 염증매개 cytokines인 TNF-${\alpha}$, IL-$1{\beta}$, IL-6의 분비와 PGE2의 분비량을 측정하였으며, cDNA microarray 방법으로 유전자 발현을 측정하였다. 미숙과와 성숙과 복분자 섭취는 TNF-${\alpha}$의 생성을 유의적으로 억제하였으나, IL-$1{\beta}$, IL-6는 미숙과 복분자 섭취에 의해서만 감소하였으며 $PGE_2$의 분비에는 영향을 주지 않았다. 본 연구결과, 미숙과와 성숙과 복분자 섭취에 의해 8개의 유전자 발현이 감소된 것으로 확인되었는데, 이중 세포의 면역반응과 관련된 5-LOX, iNOS, IL-11의 발현이 유의적으로 감소되었으며, 만성질환 특히 심혈관계 질환을 유발하는 인자인 tPA, thrombospondin 1, ceruloplasmin과 암의 성장 및 전이와 관련된 VEGF A의 발현을 유의적으로 억제하였다. 한편 혐기성 관련 유전자의 발현을 억제하는 HIF3A의 발현을 유의적으로 증가시켰다. 또한 미숙과 복분자의 섭취만이 CCL8, CXCL14, PLA2의 발현을 감소시키는 것으로 나타났다. 따라서 복분자의 섭취, 특히 미숙과 복분자의 섭취는 항염증 효과를 보일 뿐 아니라 만성염증성 질환 관련 인자의 발현을 유의적으로 감소시키므로 이와 관련된 기능성 식품 개발에 활용될 수 있을 것으로 사료되며, 추후 복분자내 항염증 효능을 갖는 생리활성 성분에 대한 연구가 더 진행되어야 할 것으로 판단된다.

Keywords

References

  1. Statistics Korea. 2011. Available from: https://www.index.go.kr/egams/stts/jsp/potal/stts/PO_STTS_IdxMain.jsp?idx_cd=1438&bbs=INDX_001.
  2. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. 2010. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49: 1603-1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
  3. Laroux FS. 2004. Mechanisms of inflammation: the good, the bad and the ugly. Front Biosci 9: 3156-3162. https://doi.org/10.2741/1468
  4. Blackwell TS, Christman JW. 1997. The role of nuclear factor-${\kappa}B$ in cytokine gene regulation. Am J Respir Cell Mol Biol 17: 3-9. https://doi.org/10.1165/ajrcmb.17.1.f132
  5. Barnes PJ, Karin M. 1997. Nuclear factor-${\kappa}B$: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1066-1071. https://doi.org/10.1056/NEJM199704103361506
  6. Ben-Neriah Y, Karin M. 2011. Inflammation meets cancer, with NF-${\kappa}B$ as the matchmaker. Nat Immunol 12: 715-723. https://doi.org/10.1038/ni.2060
  7. Schmidt MI, Duncan BB, Sharrett AR, Lindberg G, Savage PJ, Offenbacher S, Azambuja MI, Tracy RP, Heiss G. 1999. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 353: 1649-1652. https://doi.org/10.1016/S0140-6736(99)01046-6
  8. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F. 2003. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107: 499-511. https://doi.org/10.1161/01.CIR.0000052939.59093.45
  9. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A. 2002. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76: 560-568. https://doi.org/10.1093/ajcn/76.3.560
  10. Arts ICW, Hollman PCH. 2005. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81: 317S-325S. https://doi.org/10.1093/ajcn/81.1.317S
  11. Ellis CL, Edirisinghe I, Kappagoda T, Burton-Freeman B. 2011. Attenuation of meal-induced inflammatory and thrombotic responses in overweight men and women after 6-week daily strawberry (Fragaria) intake. A randomized placebo-controlled trial. J Atheroscler Thromb 18: 318-327. https://doi.org/10.5551/jat.6114
  12. Terra X, Montagut G, Bustos M, Llopiz N, Ardevol A, Blade C, Fernandez-Larrea J, Pujadas G, Salvado J, Arola L, Blay M. 2009. Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 20: 210-218. https://doi.org/10.1016/j.jnutbio.2008.02.005
  13. Seymour EM, Lewis SK, Urcuyo-Llanes DE, Tanone II, Kirakosyan A, Kaufman PB, Bolling SF. 2009. Regular tart cherry intake alters abdominal adiposity, adipose gene transcription, and inflammation in obesity-prone rats fed a high fat diet. J Med Food 12: 935-942. https://doi.org/10.1089/jmf.2008.0270
  14. Santangelo C, Vari R, Scazzocchio B, Di Benedetto R, Filesi C, Masella R. 2007. Polyphenols, intracellular signalling and inflammation. Ann 1st Super Sanita 43: 394-405.
  15. Ra J, Lee HY, Choi MK, Park HG, Kang KS. 2004. Effect of decreasing body weight with plant extracts containing Rubi fructus. J Toxicol Pub Health 20: 167-172.
  16. Yang HM, Oh SM, Lim SS, Shin HK, Oh YS, Kim JK. 2008. Antiinflammatory activities of Rubus coreanus depend on the degree of fruit ripening. Phytother Res 22: 102-107. https://doi.org/10.1002/ptr.2274
  17. Yang HM, Lim SS, Lee YS, Shin HK, Oh YS, Kim JK. 2007. Comparison of the anti-inflammatory effects of the extracts from Rubus coreanus and Rubus occidentalis. Korean J Food Sci Tech 39: 342-347.
  18. Kim YH, Choi JH, Rim HK, Kang HJ, Chang SG, Park JH, Park HJ, Choi JW, Kim SD, Lee KT. 2011. 23-Hydroxytormentic acid and niga-ichgoside f1 isolated from Rubus coreanus attenuate cisplatin-induced cytotoxicity by reducing oxidative stress in renal epithelial LLC-PK1 cells. Biol Pharm Bull 34: 906-911. https://doi.org/10.1248/bpb.34.906
  19. Sohn SI, Rim HK, Kim YH, Choi JH, Park JH, Park HJ, Choi JW, Kim SD, Jeong SY, Lee KT. 2011. The ameliorative effect of 23-hydroxytormentic acid isolated from Rubus coreanus on cisplatin-induced nephrotoxicity in rats. Biol Pharm Bull 34: 1508-1513. https://doi.org/10.1248/bpb.34.1508
  20. Choi J, Lee KT, Ha J, Yun SY, Ko CD, Jung HJ, Park HJ. 2003. Antinociceptive and antiinflammatory effects of nigaichigoside $F_{1}$ and 23-hydroxytormentic acid obtained from Rubus coreanus. Biol Pharm Bull 26: 1436-1441. https://doi.org/10.1248/bpb.26.1436
  21. Lee J, Dossett M, Finn CE. 2012. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem 130: 785-796. https://doi.org/10.1016/j.foodchem.2011.08.022
  22. Pang KC, Kim MS, Lee MW. 1996. Hydrolyzable tannins from the fruits of Rubus coreanum. Kor J Pharmacogn 27: 366-370.
  23. Kim HS, Park SJ, Hyun SH, Yang SO, Lee J, Auh JH, Kim JH, Cho SM, Marriott PJ, Choi HK. 2011. Biochemical monitoring of black raspberry (Rubus coreanus Miquel) fruits according to maturation stage by $^{1}H-NMR$ using multiple solvent systems. Food Res Int 44: 1977-1987. https://doi.org/10.1016/j.foodres.2011.01.023
  24. Nam JH, Jung HJ, Choi J, Lee KT, Park HJ. 2006. The anti-gastropathic and anti-rheumatic effect of niga-ichigoside F1 and 23-hydroxytormentic acid isolated from the unripe fruits of Rubus coreanus in a rat model. Biol Pharm Bull 29: 967-970. https://doi.org/10.1248/bpb.29.967
  25. Jung KA, Han D, Kwon EK, Lee CH, Kim YE. 2007. Antifatigue effect of Rubus coreanus Miquel extract in mice. J Med Food 10: 689-693. https://doi.org/10.1089/jmf.2006.006
  26. Do SH, Lee JW, Jeong WI, Chung JY, Park SJ, Hong IH, Jeon SK, Lee IS, Jeong KS. 2008. Bone-protecting effect of Rubus coreanus by dual regulation of osteoblasts and osteoclasts. Menopause 15: 676-683. https://doi.org/10.1097/gme.0b013e31815bb687
  27. Park JH, Oh SM, Lim SS, Lee YS, Shin HK, Oh YS, Choe NH, Park JH, Kim JK. 2006. Induction of heme oxygenase-1 mediates the anti-inflammatory effects of the ethanol extract of Rubus coreanus in murine macrophages. Biochem Biophys Res Commun 351: 146-152. https://doi.org/10.1016/j.bbrc.2006.10.008
  28. Biesalski HK. 2007. Polyphenols and inflammation: basic interactions. Curr Opin Clin Nutr Metab Care 10: 724-728. https://doi.org/10.1097/MCO.0b013e3282f0cef2
  29. Rahman I, Biswas SK, Kirkham PA. 2006. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72: 1439-1452. https://doi.org/10.1016/j.bcp.2006.07.004
  30. Wu X, Rahal O, Kang J, Till SR, Prior RL, Simmen RC. 2009. In utero and lactational exposure to blueberry via maternal diet promotes mammary epithelial differentiation in prepubescent female rats. Nutr Res 29: 802-811. https://doi.org/10.1016/j.nutres.2009.10.015
  31. Adams LS, Kanaya N, Phung S, Liu Z, Chen S. 2011. Whole blueberry powder modulates the growth and metastasis of MDA-MB-231 triple negative breast tumors in nude mice. J Nutr 141: 1805-1812. https://doi.org/10.3945/jn.111.140178
  32. Xie C, Kang J, Ferguson ME, Nagarajan S, Badger TM, Wu X. 2011. Blueberries reduce pro-inflammatory cytokine TNF-${\alpha}$ and IL-6 production in mouse macrophages by inhibiting NF-${\kappa}B$ activation and the MAPK pathway. Mol Nutr Food Res 55: 1587-1591. https://doi.org/10.1002/mnfr.201100344
  33. Park Y, Kim SH, Choi SH, Han J, Chung HG. 2008. Changes of antioxidant capacity, total phenolics, and vitamin C contents during Rubus coreanus fruit ripening. Food Sci Biotechnol 17: 251-256.
  34. de Gaetano G, Donati MB, Cerletti C. 2003. Prevention of thrombosis and vascular inflammation: benefits and limitations of selective or combined COX-1, COX-2 and 5-LOX inhibitors. Trends Pharmacol Sci 24: 245-252. https://doi.org/10.1016/S0165-6147(03)00077-4
  35. Hoque A, Lippman SM, Wu TT, Xu Y, Liang ZD, Swisher S, Zhang H, Cao L, Ajani JA, Xu XC. 2005. Increased 5-lipoxygenase expression and induction of apoptosis by its inhibitors in esophageal cancer: a potential target for prevention. Carcinogenesis 26: 785-791. https://doi.org/10.1093/carcin/bgi026
  36. Melstrom LG, Bentrem DJ, Salabat MR, Kennedy TJ, Ding XZ, Strouch M, Rao SM, Witt RC, Ternent CA, Talamonti MS, Bell RH, Adrian TA. 2008. Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clin Cancer Res 14: 6525-6530. https://doi.org/10.1158/1078-0432.CCR-07-4631
  37. Ding XZ, Iversen P, Cluck MW, Knezetic JA, Adrian TE. 1999. Lipoxygenase inhibitors abolish proliferation of human pancreatic cancer cells. Biochem Biophys Res Commun 261: 218-223. https://doi.org/10.1006/bbrc.1999.1012
  38. Manev H, Manev R. 2007. 5-lipoxygenase as a possible biological link between depressive symptoms and atherosclerosis. Arch Gen Psychiatry 64: 1333. https://doi.org/10.1001/archpsyc.64.11.1333
  39. Korhonen R, Lahti A, Kankaanranta H, Moilanen E. 2005. Nitric oxide production and signaling in inflammation. Curr Drug Targets 4: 471-479. https://doi.org/10.2174/1568010054526359
  40. Nussler AK, Billiar TR. 1993. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54: 171-178. https://doi.org/10.1002/jlb.54.2.171
  41. MacMicking J, Xie QW, Nathan C. 1997. Nitric oxide and macrophage function. Annu Rev Immunol 15: 323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
  42. Giurgea N, Constantinescu MI, Stanciu R, Suciu S, Muresan A. 2005. Ceruloplasmin-acute-phase reactant or endogenous antioxidant? The case of cardiovascular disease. Med Sci Monit 11: RA48-51.
  43. Denko CW. 1979. Protective role of ceruloplasmin in inflammation. Agents Actions 9: 333-336. https://doi.org/10.1007/BF01970657
  44. Fox PL, Mazumder B, Ehrenwald E, Mukhopadhyay CK. 2000. Ceruloplasmin and cardiovascular disease. Free Radic Biol Med 28: 1735-1744. https://doi.org/10.1016/S0891-5849(00)00231-8
  45. Goldstein I, Kaplan HB, Edelson HS, Weissmann G. 1979. A new function for ceruloplasmin as an acute-phase reactant in inflammation: a scavenger of superoxide anion radicals. Trans Assoc Am Physicians 92: 360-369.
  46. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. 2005. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201: 1089-1099. https://doi.org/10.1084/jem.20041896
  47. George ML, Tutton MG, Janssen F, Arnaoutz A, Abulafi AM, Eccles SA, Swift RI. 2001. VEGF-A, VEGF-C, and VEGF-D in colorectal cancer progression. Neoplasia 3: 420-427. https://doi.org/10.1038/sj.neo.7900186
  48. Carmeliet P. 2005. VEGF as a key mediator of angiogenesis in cancer. Oncology 69: 4-10. https://doi.org/10.1159/000088478
  49. Mirshahi M, Soria J, Soria C, Faivre R, Lu H, Courtney M, Roitsch C, Tripier D, Caen JP. 1989. Evaluation of the inhibition by heparin and hirudin of coagulation activation during r-tPA-induced thrombolysis. Blood 74: 1025-1030.
  50. Demchuk AM, Tanne D, Hill MD, Kasner SE, Hanson S, Grond M, Levine SR. 2001. Predictors of good outcome after intravenous tPA for acute ischemic stroke. Neurology 57: 474-480. https://doi.org/10.1212/WNL.57.3.474
  51. Saver JL, Yafeh B. 2007. Confirmation of tPA treatment effect by baseline severity-adjusted end point reanalysis of the NINDS-tPA stroke trials. Stroke 38: 414-416. https://doi.org/10.1161/01.STR.0000254580.39297.3c
  52. Tanne D, Gorman MJ, Bates VE, Kasner SE, Scott P, Verro P, Binder JR, Dayno JM, Schultz LR, Levine SR. 2000. Intravenous tissue plasminogen activator for acute ischemic stroke in patients aged 80 years and older: the tPA stroke survey experience. Stroke 31: 370-375. https://doi.org/10.1161/01.STR.31.2.370
  53. DiPietro LA, Polverini PJ. 1993. Angiogenic macrophages produce the angiogenic inhibitor thrombospondin 1. Am J Pathol 143: 678-684.
  54. Lawler J. 2000. The functions of thrombospondin-1 and -2. Curr Opin Cell Biol 12: 634-640. https://doi.org/10.1016/S0955-0674(00)00143-5
  55. Salvesen HB, Akslen LA. 1999. Significance of tumourassociated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. Int J Cancer 84: 538-543. https://doi.org/10.1002/(SICI)1097-0215(19991022)84:5<538::AID-IJC17>3.0.CO;2-B
  56. Majack RA, Goodman LV, Dixit VM. 1998. Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J Cell Biol 106: 415-422.
  57. Yamauchi M, Imajoh-Ohmi S, Shibuya M. 2007. Novel antiangiogenic pathway of thrombospondin-1 mediated by suppression of the cell cycle. Cancer Sci 98: 1491-1497. https://doi.org/10.1111/j.1349-7006.2007.00534.x
  58. Dang CV, Kim JW, Gao P, Yustein J. 2008. The interplay between MYC and HIF in cancer. Nat Rev Cancer 8: 51-56. https://doi.org/10.1038/nrc2274
  59. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW. 1999. Overexpression of hypoxia-inducible factor $1{\alpha}$ in common human cancers and their metastases. Cancer Res 59: 5830-5835.
  60. Yeo EJ, Chun YS, Park JW. 2004. New anticancer strategies targeting HIF-1. Biochem Pharmacol 68: 1061-1069. https://doi.org/10.1016/j.bcp.2004.02.040
  61. Islam SA, Chang DS, Colvin RA, Byrne MH, McCully ML, Moser B, Lira SA, Charo IF, Luster AD. 2011. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting $IL-5^{+}\;T(_{H})2$ cells. Nat Immunol 12: 167-177. https://doi.org/10.1038/ni.1984
  62. Tanegashima K, Okamoto S, Nakayama Y, Taya C, Shitara H, Ishii R, Yonekawa H, Minokoshi Y, Hara T. 2010. CXCL14 deficiency in mice attenuates obesity and inhibits feeding behavior in a novel environment. PLoS One 5: e10321. https://doi.org/10.1371/journal.pone.0010321
  63. Magrioti V, Kokotos G. 2013. Phospholipase A2 inhibitors for the treatment of inflammatory diseases: a patent review (2010-present). Expert Opin Ther Pat 23: 333-344. https://doi.org/10.1517/13543776.2013.754425

Cited by

  1. Food Composition of Raw, Boiled, and Roasted Sweet Potatoes vol.28, pp.1, 2017, https://doi.org/10.7856/kjcls.2017.28.1.59
  2. Review on Anti-Cancer and Anti-Imflammatory Activity from Rubus coreanus Miquel vol.21, pp.5, 2015, https://doi.org/10.20878/cshr.2015.21.5.015