DOI QR코드

DOI QR Code

Effect of Resistant Starch on the Large Bowel Environment and Plasma Lipid in Rats with Loperamide-Induced Constipation

저항전분 투여가 Loperamide 유도 변비 쥐의 대장환경과 혈청지질에 미치는 효과

  • Sin, Hyun-Ju (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Kim, Kwang-Ok (Center for Beautiful Aging, Kyungpook National University) ;
  • Kim, Sung-Hong (Division of Analysis Research, Daegu Center, Korea Basic Science Institute) ;
  • Kim, Young-Ah (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Lee, Hye-Sung (Dept. of Food Science and Nutrition, Kyungpook National University)
  • 신현주 (경북대학교 식품영양학과) ;
  • 김광옥 (경북대학교 장수생활과학연구소) ;
  • 김성홍 (한국기초과학지원연구원 대구센타) ;
  • 김영아 (경북대학교 식품영양학과) ;
  • 이혜성 (경북대학교 식품영양학과)
  • Received : 2010.02.03
  • Accepted : 2010.04.14
  • Published : 2010.05.31

Abstract

The present study was conducted to evaluate the effect of resistant starch (RS) on the large bowel function and plasma lipids in rats with constipation induced by Loperamide. Animals were divided into six groups: normal control-5% cellulose, constipation-5% cellulose, constipation-5% pectin, constipation-5% RS-type 2 (RS2), constipation-8% RS2 and constipation-5% RS type 3 (RS3) groups, and fed experimental diets for five weeks. The results from RS groups were compared with those from other dietary fiber groups. The groups supplemented with RS3 or high level of RS2 showed significantly increased counts of bifidobacteria in the cecum than the other groups. The production of total short chain fatty acids in the cecal contents was significantly high in pectin, RS3 and high RS2 groups. The pH in the cecal contents of the RS supplemented groups was significantly decreased compared with the cellulose supplemented groups. The production of prostaglandin E2 in the colon mucus of the RS groups was higher than the normal group; however, it was significantly decreased compared to the cellulose or pectin supplemented constipated groups. The thickness of the mucus layer and the production of mucus from epithelial cells were significantly increased in RS3 group compared to the constipated cellulose group. Supplementation of resistant starch significantly elevated the ratio of HDL-cholesterol to total cholesterol and significantly lowered plasma atherogenic index compared with cellulose or pectin supplementation in constipated rats. The results of the present study demonstrated that resistant starch supplementation may help in improving the large bowel environment by stimulation of bifidobacterial proliferation, reduction of pH and inflammation factor and by increased production of mucus. It has also been found that an additional health benefit is improvement in lipid levels of serum.

본 연구는 저항전분이 Loperamide 유도 변비 쥐의 대장내 환경과 혈중지질 농도에 미치는 영향에 대해 실험 조사하였다. 실험동물은 Sprague-Dawley계 수컷 쥐를 사용하였으며 60마리를 정상 셀룰로오스군, 변비 셀룰로오스군, 변비 펙틴군, 변비 RS2군, 변비 고RS2군, 변비 RS3군의 6개 군으로 나누었다. AIN-76 식이를 기본으로 각각 다른 식이 섬유원 즉, 셀룰로오스, 펙틴, RS2, RS3를 첨가하여 에너지 밀도가 동일한 실험식을 변비 유발 쥐에 5주 동안 투여하여 다음과 같은 결과를 얻었다. RS3 투여군과 고농도 RS2 투여군은 맹장 내용물의 비피더스균 수를 정상대조군에 비해 유의적으로 높이는 효과를 나타내었다. 맹장 내용물의 단쇄지방산총량은 셀룰로오스 군에 비해 펙틴과 저항전분군들에서 유의적으로 높았고, 개별 단쇄지방산은 프로피온산의 경우 펙틴군에서 가장 높았으며 부티르산은 CR3군에서 가장 높았다. 저항전분의 투여는 맹장 내용물의 pH를 셀룰로오스군에 비해 유의적으로 낮추었다. RS3 투여는 대장 관내 점막의 두께를 정상대조군에 비해 증가시키는 경향을 보였고, 점액분비 세포의 활성도를 정상대조군과 비슷한 수준으로 나타내었다. 염증지표 $PGE_2$의 수준은 저항전분 보충군들이 정상셀룰로오스군에 비해서는 높았으나 변비 셀룰로오스군이나 펙틴군에 비해서는 유의적으로 낮았다. 뿐만 아니라 저항전분들의 투여는 종류에 관계없이 변비동물에서 혈중 중성지질과 총 콜레스테롤 농도를 낮추고 HDL-콜레스테롤의 비율을 높임으로써 동맥경화지수를 낮추어 지질대사를 개선하는 유익한 효과를 나타내었다. 이상의 결과들에서 저항성 전분들은 장내 비피더스균과 같은 유용균의 증식을 활성화 시키며 단쇄지방산의 생산을 증가시킴으로써 장내 pH를 낮추는 효과를 나타낼 수 있으며, 또한 대장 점막층의 두께와 점액분비 세포수를 증가시키고 염증지표 수준을 낮춤으로서 변비동물의 대장 내의 환경을 건강하게 유지하고 장 기능을 효과적으로 개선시킬 뿐 아니라 혈중지질의 개선효과를 함께 나타낼 것으로 사료된다.

Keywords

References

  1. Skrabanja V, Liljeberg Elmstahl HGM, Kreft I, Bjorck IME. 2001. Nutritional properties of starch in buckwheat products: Studies in vitro and in vivo. J Agric Food Chem 49: 490-496. https://doi.org/10.1021/jf000779w
  2. Yook HS, Kim YH, Ahn HJ, Kim DH, Kim JO, Byun MW. 2000. Rheological properties of wheat flour dough and qualities of bread prepared with dietary fiber purified from ascidian (Halocynthia roretzi) tunic. Korean J Food Sci Technol 32: 387-395.
  3. Kim SY, Chang YK. 1993. Effect of guar gum and calcium supplement on nutritional bioavailabilities in the rats. Korean J Nutr 26: 21-33.
  4. Lopez HW, Coudray C, Bellanger J, Levrat-verny MA, Demigine C, Rayssiguier Y, Remesy C. 2000. Resistant starch improves mineral assimilation in rats adapted to a wheat bran diet. Nutr Res 20: 141-155. https://doi.org/10.1016/S0271-5317(99)00146-3
  5. Englyst HN, Trowell H, Southgate DAT, Cummings JH. 1987. Dietary fiber and resistant starch. Am J Clin Nutr 46: 873-874. https://doi.org/10.1093/ajcn/46.6.873
  6. Brown I, Warhust M, Arcot J, Playen M, Illman RT, Topping DL. 1997. Fecal numbers of bifidobacteria are higher in pigs fed Bifidobacterium longum with a high amlylose cornstarch than with a low amylose cornstarch. J Nutr 127: 1822-1827. https://doi.org/10.1093/jn/127.9.1822
  7. de Deckere EAM, Kloots WJ, van Amelsvoort JM. 1993. Resistant starch decreases serum total cholesterol and triglycerol concentrations in rats. J Nutr 123: 2142-2151.
  8. Topping DL, Clifton PM. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81: 1031-1064. https://doi.org/10.1152/physrev.2001.81.3.1031
  9. Lopez HW, Levrat-verny MA, Coudray C, Besson C, Krespine V, Messager A, Demigne C, Remesy C. 2001. Class 2 resistant starches lower plasma and liver lipids and improve mineral retention in rats. J Nutr 131: 1283-1289. https://doi.org/10.1093/jn/131.4.1283
  10. Ferguson LR, Tasman-Jones C, Englyst H, Harris PJ. 2000. Comparative effects of three resistant starch preparation on transit time and short chain fatty acid production in rats. Nutr Cancer 36: 230-237. https://doi.org/10.1207/S15327914NC3602_13
  11. Seol SM, Bang MH, Choi OS, Kim WK. 2003. Effects of high amylose starch on lipid metabolism and immune response in rats. J Korean Soc Food Sci Nutr 32: 450-457. https://doi.org/10.3746/jkfn.2003.32.3.450
  12. Loeschke K, Schmid T, Farack UM. 1989. Inhibition by loperamide of mucus secretion in the rat colon in vivo. Eur J Pharmacol 170: 41-46. https://doi.org/10.1016/0014-2999(89)90131-3
  13. Hungate RE. 1950. The anaerobic mesophilic cellulolytic $bacteria^{1}$. Am Soc Microbiol 14: 1-49.
  14. Titgemeyer EC, Bourquin LD, Fahey GC, Garleb KA. 1991. Fermentability of various fiber sources by human fecal bacteria in vitro. Am J Clin Nutr 53: 1418-1424. https://doi.org/10.1093/ajcn/53.6.1418
  15. Guillon F, Champ MMJ. 2002. Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br J Nutr 88: 293-306. https://doi.org/10.1079/BJN2002720
  16. Christian D, Christian R. 1985. Stimulation of absorption of volatile fatty acids and minerals in the cecum of rats adapted to a very high fiber diet. J Nutr 115: 53-60. https://doi.org/10.1093/jn/115.1.53
  17. Sheng H, Shao J, Washington MK, DuBois RN. 2001. Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J Biol Chem 276: 18075-18081. https://doi.org/10.1074/jbc.M009689200
  18. Holmes DT, Frohlich J, Buhr KA. 2008. The concept of precision extended to the atherogenic index of plasma. Clin Biochem 41: 631-635. https://doi.org/10.1016/j.clinbiochem.2008.01.023
  19. Mitsuoka T. 1990. Bifidobacteria and their role in human health. J Ind Microbiol 6: 263-268. https://doi.org/10.1007/BF01575871
  20. Kimura K, McCartney AL, McConnell MA, Tannock GW. 1997. Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl Environ Microbiol 63: 3394-3398.
  21. Silvester KR, Englyst HN, Cummings JH. 1995. Ileal recovery of starch from whole diets containing resistant starch measured in vitro and fermentation of ileal effluent. Am J Clin Nutr 62: 403-411. https://doi.org/10.1093/ajcn/62.2.403
  22. Le Leu RK, Brown IL, Hu Y, Morita T, Esterman A, Young GP. 2007. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Carcinogenesis 28: 240-245. https://doi.org/10.1093/carcin/bgl245
  23. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. 2006. Colonic health: fermentation and short chain fatty acids. J Clinical Gastroenterology 40: 235-243. https://doi.org/10.1097/00004836-200603000-00015
  24. Vince AJ, McNeil NI, Wager JD, Wrong OM. 1990. The effect of lactulose, pectin, arabinogalactan and cellulose on the production of organic acids and metabolism of ammonia by intestinal bacteria in a faecal incubation system. Br J Nutr 63: 17-26. https://doi.org/10.1079/BJN19900088
  25. Thompson DB. 2000. Strategies for the manufacture of resistant starch. Trends in Food Sci Technol 11: 245-253. https://doi.org/10.1016/S0924-2244(01)00005-X
  26. Lim BO, Lee CJ, Kim JD. 2004. Study on immunoregulatory function of dietary fiber. Food Ind Nutr 9: 26-30.
  27. Siavoshian S, Segain JP, Kornprobst M, Bonnet C, Cherbut C, Galmiche JP, Blottiere HM. 2000. Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: induction of cyclin D3 and p21 expression. Gut 46: 507-514. https://doi.org/10.1136/gut.46.4.507
  28. Brown I, Warhurst M, Arcot J, Playne M, IIIman RJ, Topping DL. 1997. Fecal numbers of bifidobacteria are higher in pigs fed Bifidobacterium longum with a high amylose cornstarch than with a low amylose cornstarch. J Nutr 127: 1822-1827. https://doi.org/10.1093/jn/127.9.1822
  29. Jenkins DJ, Vuksan V, Kendall CW, Wursch P, Jeffcoat R, Waring S, Mehling CC, Vidgen E, Augustin LS, Wong E. 1998. Physiological effects of resistant starches on fecal bulk, short chain fatty acids, blood lipids and glycemic index. J Am Coll Nutr 17: 609-616. https://doi.org/10.1080/07315724.1998.10718810
  30. Sembries S, Dongowski G, Jacobasch G, Mehrlander K, Will F, Dietrich H. 2003. Effects of dietary fibre-rich juice colloids from apple pomace extraction juices on intestinal fermentation products and microbiota in rats. Br J Nutr 90: 607-616. https://doi.org/10.1079/BJN2003925
  31. Corfield AP, Carroll D, Myerscough N, Probert CS. 2001. Mucins in the gastrointestinal tract in health and disease. Front Biosci 6: D1321-1327. https://doi.org/10.2741/Corfield
  32. Corfield AP, Warren BF. 1996. Mucus glycoproteins and their role in colorectal disease. J Pathol 180: 8-17. https://doi.org/10.1002/(SICI)1096-9896(199609)180:1<8::AID-PATH596>3.0.CO;2-9
  33. Whitehead RH, Young GP, Bhathal PS. 1986. Effect of short chain fatty acids on a new human colon carcinoma cell line (LIM1215). Gut 27: 1457-1463. https://doi.org/10.1136/gut.27.12.1457
  34. Sakata T. 1987. Stimulatory effect of short chain fatty acids on the epithelial cell proliferation in rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br J Nutr 58: 95-103. https://doi.org/10.1079/BJN19870073
  35. Scheppach W, Christl SU, Bartram HP, Rechter F, Kasper H. 1997. Effects of short chain fatty acids on the inflamed colonic mucosa. Scand J Gastroenterol Suppl 222: 53-57.
  36. Mortensen PB, Clausen MR. 1996. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl 216: 132-148.
  37. Saemann MD, Bohmig GA, Zlabinger GJ. 2002. Short-chain fatty acids: bacterial mediators of a balanced host-microbial relationship in the human gut. Wien Klin Wochenschr 114: 289-300.
  38. Lee HG. 1996. Nutritional problems of Koreans. Cause various diseases and nutritional aspects of Korean-The necessity of research of nutrition/health. Korean J Nutr 29: 381-383.
  39. Nishina PM, Schneeman BO, Freedland RA. 1991. Effects of dietary fibers on nonfasting plasma lipoprotein and apolipoprotein levels in rats. J Nutr 121: 431-437. https://doi.org/10.1093/jn/121.4.431
  40. Garcia Diez F, Garcia Mediavilla V, Bayon JE, Gonzalez Gallego J. 1996. Pectin feeding influences fecal bile acids excretion, hepatic bile acid and cholesterol synthesis and serum cholesterol in rats. J Nutr 126: 1766-1771.
  41. Anderson JW, Jones AE, Riddle-Mason S. 1994. Ten different dietary fibers have significantly different effects on serum and liver lipids of cholesterol-fed rats. J Nutr 124: 78-83. https://doi.org/10.1093/jn/124.1.78
  42. Gallaher DA, Hassel CA, Lee KJ, Gallaher CM. 1993. Viscosity and fermentability as attributes of dietary fiber responsible for the hypocholesterolemic effect in hamsters. J Nutr 123: 244-256.
  43. Vanhoof K, Schrijver R. 1997. Consumption of enzyme resistant starch and cholesterol metabolism in normo- and hypercholesterolemic rats. Nutr Res 17: 1331-1340. https://doi.org/10.1016/S0271-5317(97)00117-6
  44. Fernandez ML, Roy S, Jimenez MV. 2000. Resistant starch and cholestyramine have distinct effects on hepatic cholesterol metabolism in guinea pigs fed a hypercholesterolemic diet. Nutr Res 20: 837-849. https://doi.org/10.1016/S0271-5317(00)00170-6
  45. Chen WJL, Anderson JW, Jennings D. 1984. Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibers in cholesterol fed rats. Proc Soc Exp Biol Med 175: 215-218. https://doi.org/10.3181/00379727-175-41791
  46. David JA, Jenkins MD. 1998. Physiological effects of resistant starches on fecal bulk, short chain fatty acids, blood lipids and glycemic index. J Am Coll Nutr 17: 609-616. https://doi.org/10.1080/07315724.1998.10718810
  47. Kishida T, Nogami H, Himeno S, Ebihara K. 2001. Heat moisture treatment of high amylose cornstarch increases its resistant starch content but not its physiologic effect in rats. J Nutr 131: 2716-2721. https://doi.org/10.1093/jn/131.10.2716

Cited by

  1. The Effect of Insoluble Dietary Fiber Extracted from Chinese Cabbage Waste on Plasma Lipid Profiles in Rats Fed a High Fat Diet vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.033
  2. Effect of dual-type oligosaccharides on constipation in loperamide-treated rats vol.10, pp.6, 2016, https://doi.org/10.4162/nrp.2016.10.6.583
  3. Resistant starch in food industry: A changing outlook for consumer and producer vol.66, pp.1-2, 2014, https://doi.org/10.1002/star.201300110
  4. Quantification of BSA-loaded chitosan/oligonucleotide nanoparticles using reverse-phase high-performance liquid chromatography vol.410, pp.27, 2018, https://doi.org/10.1007/s00216-018-1319-9