• 제목/요약/키워드: Propulsion shafting vibration

검색결과 84건 처리시간 0.023초

디젤기관 추진 축계의 연성진동에 관한 연구 (제3보 : 프로펠러 기진에 의한 진동과 그 대책) (A Study on Coupled Vibrations of Diesel Engine Propulsion Shafting (3rd Report : Vibration by Propeller Exciting and its Countermeasure))

  • 전효중;이돈출;김의간;김정렬
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.173-179
    • /
    • 2001
  • The torsional or axial critical vibration of the order coinciding with the number of propeller blades is simultaneously excited by the harmonic tangential or radial forces acting on the crank shaft and by the harmonic of the same order from the propeller. The exciting torque of propeller is relatively small comparing with that of crank side, but the exciting force of propeller rather larger than that of crank shaft. With this situation, the exciting force of propeller cannot neglect if the axial vibration of propulsion shafting is calculated. With the propeller in its optimal angular position, i.e. its excitation effect opposed to that of the engine, the stresses at the critical revolution will largely cancel themselves out. In this paper, a method of optimizing the angular propeller position with regard to torsional and axial vibration is studied. The optimal relative angle is determined theoretically by calculation results of coupled torsional-axial vibration.

  • PDF

대빙 등급 선박 추진 시스템의 기진 응답 평가 (Excitation Response Estimation of Polar Class Vessel Propulsion Shafting System)

  • 로날드 디 바로;이돈출
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1166-1176
    • /
    • 2011
  • 연중 운항할 수 있는 북극 항로 개설에 따른 전망으로 미개발 천연자원의 탐사와 짧아진 항로로 많은 기회를 부여하고 있다. 이는 환경과 거리가 먼 그리고 기술적인 경험 부족으로 해사 분야에서 커다란 도전으로 남아 있다. 엔진 설계자와 제작자는 이 지역에서 환경적 그리고 기술적으로 적합한 최적화된 추진시스템을 위하여 계속적인 조사를 하고 있고, 국제선급연합과 선급에서 인정하고 있는 대빙 등급 선박의 추진축계 설계를 위하여 통일된 규격의 여러 가지 특성에 대하여 개선할 필요가 있다. 대빙 등급 선박의 추진축계 시스템에서 주 기진력은 프로펠러와 빙 하중의 상호작용으로 인식하고 있고 국제선급연합에서는 빙의 파쇄와 충격하중으로만 간주하고 있지만, 추진축계 설계에 있어 시스템에 대한 여러 가지 인자의 특징을 고려하여야 한다. 이 논문은 종류가 다른 추진 시스템의 동적 응답에 영향을 주는 인자들에 평가하고 있고, 추후 추진 시스템의 설계단계에서 이러한 인자들이 충분한 역할을 갖는 것을 감안 고려해줄 것을 기대하고 있다.

저속 2행정 디젤엔진의 종진동 댐퍼 동특성에 관한 연구 (A Study on the Dynamic Characteristics of Axial Vibration Damper for Two Stroke Low Speed Diesel Engine)

  • 이돈출;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권2호
    • /
    • pp.113-121
    • /
    • 1994
  • Since two oil shocks in 1970s, all of engine makers have persevered in their efforts to reduce specific fuel consumption and to increase engine power rate as much as possible in marine diesel engines. As a result, the maximum pressure in cylinders of these engines has been continuously increased. It causes direct axial vibration. The axial stiffness of crank shaft is low compared to old types of engine models by increasing the stroke/bore ratio and its major critical speed might occur within engine operation range. An axial damper, therefore, needs to be installed in order to reduce the axial vibration amplitude of the crankshaft. Usually the main critical speed of axial vibration for the propulsion shafting system with a 4-8 cylinder engine exists near the maximum continuous revolution(MCR). In this case, when the damping coefficient of the damper is increased within the allowance of the structural strength, its stiffness coefficient is also increased. Therefore, the main critical speed of axial vibration can be moved beyond the MCR. It has the same function as a conventional detuner. However, in the case of a 9-12 cylinder engine, the main critical speed of axial vibration for the propulsion shafting system exists below the MCR and thus the critical speed cannot be moved beyond the MCR by using an axial damper. In this case, the damping coefficient of an axial damper should be adjusted by considering the range of engine revolution, the location and vibration amplitude of the critical speed, the fore and aft vibration of the hull super structure. It needs to clarify the dynamic characteristics of the axial vibration damper to control the axial vibration appropriately. Therefore authors suggest the calculation method to analyse the dynamic characteristics of axial vibration damper. To confirm the calculation method proposed in this paper, it is applied to the propulsion shafting system of the actual ships and satisfactory results are obtained.

  • PDF

14 실린더를 갖는 초대형 저속 2행정 디젤엔진의 종진동 특성에 관한 연구 (A Study on the Axial Vibration Characteristics of the Super Large 2 Stroke Low Speed Diesel Engine with 14 Cylinders)

  • 이돈출;김태언;유정대
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.376-381
    • /
    • 2009
  • The increasing needs for higher cargo capacity in the container vessels' fleet has led to ship builder's demand for higher power output rating engine to meet the propulsion requirement, thus, leading to the development of super large two stroke low speed diesel engines. This large sized bore engines with more than 12 cylinders are capable of delivering power output up to more than 100,000 bhp at maximum continuous rating. The thrust variation force due to axial vibration occurring in propulsion shafting of these ships are transmitted to ship structure via thrust bearing. This force may vibrate the super structure of ship in the fore-aft direction and the fatigue strength of crank shaft can be decreased by additional bending stress increase in crank shaft pin and journal. In this paper, the axial vibration of propulsion shafting system on the 14RT-flex96C super large diesel engine with 14 cylinders is identified by theoretical analysis and vibration measurement.

  • PDF

A Study on the Torsional Vibration Characteristics of Super Large Two Stroke Low Speed Engines with Tuning Damper

  • Barro Ronald D;Kim Sang-Hwan;Lee Don-Chool
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.776-785
    • /
    • 2006
  • Ship builder's requirement for a higher power output rating has lead to the development of super large two stroke low speed diesel engines. Usually a large-sized bore ranging from 8-14 cylinders, this engine group is capable of delivering power output of more than 100,000 bhp at maximum continuous rating. Other positive aspects of this engine type include higher thermal efficiency, reliability, durability and mobility. This all playa vital role in meeting the propulsion requirement of vessels, specifically for large container ships, of which speed is a primary concern to become more competitive. Consequently, this also resulted in the modification of engine parameters and new component designs to meet the consequential higher mean effective pressure and higher maximum combustion pressure. Even though the fundamental excitation mechanism unchanged, torsional vibration stresses in the propulsion shafting are subsequently perceived to be higher. As such, one important viewpoint in the initial engine design is the resulting vibration characteristic expected to prevail on the propulsion shafting system(PSS). This paper investigated the torsional vibration characteristics of these super large engines. For the two node torsional vibration with a nodal point on the crankshaft, a tuning damper is necessary to reduce the torsional stresses on the crankshaft. Hence, the tuning torsional vibration damper design and compatibility to the shafting system was similarly reviewed and analyzed.

  • PDF

디젤기관의 토크 하모닉스에 대한 이론적 해석 (A Study on the Thoretical Analysis of the Torque Harmonics for Diesel Engines)

  • 이용진;장민오;김의간;전효중
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.465-473
    • /
    • 2000
  • In this crankshaft of marine diesel engines the exciting torques are produced by gas pressure and reciprocating masses. These torques are periodically changing and are extremely out of balance. To calculate the torsional vibrations of propulsion shafting caused by unbalanced torque the torque harmonics are utilized. Until now to calculate the torsional vibrations of propulsion shafting. the torque harmonics have been supplied by the engine maker. When the torque harmonics of an engine are not available the torque harmonics of a similar engine type had to be used. However such data is not suitable for the reliable calculations of torsional vibrations. In this paper the combustion characteristics of marine diesel engines including $\rho{-}\upsilon$ diagram are investigated and the torque harmonics based on these are theoretically calculated. reliability of the calculations is confirmed by comparing them with those of an engine maker. This study should prove useful for the calculations of torsional vibrations for diesel engine propulsion shafting. particularly for 4-stroke engines whose torque harmonics are difficult to obtain directly from the engine and not ordinarily supplied by the engine maker.

  • PDF

선박디젤추진축계 감쇠강제비틂진동의 확률적 해석 (Probabilistic Analysis of Forced-Damped Torsional Vibration of Marine Diesel Propulsion Shafting Systems)

  • 안시영
    • 대한조선학회논문집
    • /
    • 제31권4호
    • /
    • pp.157-166
    • /
    • 1994
  • 최근의 배는 에너지절약을 도모하기 위하여 디이젤기관이 대구경 장행정 소수실린더 저속회전화 추세에 있기 때문에 기진력이 커지고 있다. 이와같은 결과로 추진축계에 과잉비틂진동응력이 작용하게 되어 선박운항에 지장을 줄 정도의 플로렐러축의 결손사고가 종종 발생하곤 한다. 현재까지의 추지축계에 대한 설계 및 비틂진동해석은 대부분 축계의 비틂기진력이 확정적이란 가정하에 수행되어 왔다. 이와 관련하여 축계 비틂기진력의 불규칙성의 영향을 고려한 확률적 비틂진동해석에 관한 연구가 이루워지고 있다. 본 연구에서는 기관기진력의 확률변수를 고려하여 추진축계의 강제 비틂진동의 확률적 해석에 대한 새로운 방법을 제시하였다. 확률적 해석에 응답면이론과 Monte Carlo 시뮤레이션 방법이 이용되었다. 본 해석방법의 타당성 여부를 확인하기 위하여 Nikolaidis 등이 사용한 시산대상선에 대한 일련의 수치계산을 수행하고, 그 결과를 Nikolaidis 등의 연구결과와 비교 검토하여 본 결과 비교적 잘 일치하고 있음을 미루어 보아 본 해석방법이 타당성이 확인되었다.

  • PDF