DOI QR코드

DOI QR Code

Excitation Response Estimation of Polar Class Vessel Propulsion Shafting System

대빙 등급 선박 추진 시스템의 기진 응답 평가

  • Received : 2011.09.27
  • Accepted : 2011.10.26
  • Published : 2011.12.20

Abstract

The prospect in opening the arctic trade transportation route on a year-round basis offers vast opportunity of exploring untapped resources and shortened navigational routes. In addition, the environment's remoteness and lack of technical experiences remains a big challenge for the maritime industry. With this, engine designers and makers are continually investigating, specifically optimizing propulsion shafting system design, to meet the environmental and technical challenges of the region. The International Association of Classification Society, specifically machinery requirements for polar class ships(IACS UR13), embodies the propulsion shafting design requirements for ice class vessels. However, the necessity to upgrade the various features of the unified rules in meeting current polar requirements is acknowledged by IACS and other classification societies. For the polar class propulsion shafting system, it is perceived that the main source of excitation will be the propeller - ice load interaction. The milling - and the impact load, in addition to the load cases interpreted by IACS, contribute greatly to the overall characteristic of the system and due considerations are given during the propulsion design stage. This paper will expound on the excitation load estimation factors affecting the dynamic response of the different propulsion shafting system design. It is anticipated that detailed understanding of these factors will have a significant role during propulsion shafting design in the future.

연중 운항할 수 있는 북극 항로 개설에 따른 전망으로 미개발 천연자원의 탐사와 짧아진 항로로 많은 기회를 부여하고 있다. 이는 환경과 거리가 먼 그리고 기술적인 경험 부족으로 해사 분야에서 커다란 도전으로 남아 있다. 엔진 설계자와 제작자는 이 지역에서 환경적 그리고 기술적으로 적합한 최적화된 추진시스템을 위하여 계속적인 조사를 하고 있고, 국제선급연합과 선급에서 인정하고 있는 대빙 등급 선박의 추진축계 설계를 위하여 통일된 규격의 여러 가지 특성에 대하여 개선할 필요가 있다. 대빙 등급 선박의 추진축계 시스템에서 주 기진력은 프로펠러와 빙 하중의 상호작용으로 인식하고 있고 국제선급연합에서는 빙의 파쇄와 충격하중으로만 간주하고 있지만, 추진축계 설계에 있어 시스템에 대한 여러 가지 인자의 특징을 고려하여야 한다. 이 논문은 종류가 다른 추진 시스템의 동적 응답에 영향을 주는 인자들에 평가하고 있고, 추후 추진 시스템의 설계단계에서 이러한 인자들이 충분한 역할을 갖는 것을 감안 고려해줄 것을 기대하고 있다.

Keywords

References

  1. Woodyard, D., 2010, Arctic Exploration Increases Demand for Ice Operations, Marine Propulsion, Arctic Shipping, http://www.mpropulsion.com
  2. Gilmour, T. H., 2008, Arctic Shipping & Class, U.S. Maritime Administration Arctic Shipping Conference.
  3. The National Academies, 2006, Polar Icebreakers in a Changing World: An Assessment of U.S. Needs, Summary for Congress.
  4. Collyer, R., 2009, Stena's DrillMAX ICE to DNV Class, DNV Forum no 02.
  5. The Naval Architect, 2010, ABS and DNV Opt for Ice Class.
  6. Chang, K. Y., Jan, G. E. and Fan, K. C. M., 2002, An Integrated Computer-aided System and Parts Component Repository for Shaft Design Automation, Journal of Marine Science and Technology, Vol. 10, No. 1, pp. 68-76.
  7. Lee, S. K., 2007, Engineering Practice on Ice Propeller Strength Assessment Based on IACS Polar Ice Rule-UR13, 10th International Symposium on Practical Design of Ships and Other Floating Structures, ABS Technical Papers.
  8. Kozousek, V. M. and Davies, P., 2000, Analysis and Survey Procedures of Propulsion Systems: Shaft Alignment. http://www.martv.com
  9. Sodhi, D. S., 1995, Northern Sea Route Reconnaissance Study, A Summary of Icebreaking Technology, US Army Corps of Engineers Cold Regions Research & Engineering Laboratory.
  10. Dymarski, C. and Narewski, M., 2009, Analysis of Ship Shaft Line Coupling Bolts Failure, Politechnika Gdanska, Wydzial Oceanotechniki I Okretownictwa.
  11. Morawski, L. and Szuca, Z., 2009, The Monitoring of Ship Propulsion by Torque and Rotational Speed Measurements on the Propeller Shaft, Journal of Polish CIMAC, Gdansk University of Technology.
  12. Lee, D. C. and Kim, S. H., 2007, An Estimation on Two Stroke Low Speed Diesel Engines' Shaft Fatigue Strength due to Torsional Vibrations in Time Domain, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 17. No. 7, pp. 572-578. https://doi.org/10.5050/KSNVN.2007.17.7.572
  13. Lee, D. C. and Barro, R. D., 2009, A Study on the Torsional Vibration Characteristics of Super Large Two Stroke Low Speed Diesel Engines with Tuning Damper, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 19, No. 1, pp. 64-75. https://doi.org/10.5050/KSNVN.2009.19.1.064
  14. Gatzwiller, K., Bruel & Kjaer, Rylander, A., 1994, Solving a Critical Propulsion Problem at Volvo Penta Using Two Torsional Vibration Meters Type 2523, Application Note, Bruel & Kjaer.
  15. Magazinovic, G., 2000, Utility of Highstrength Steels for Main Propulsion Shafting Design,9th International Congress of the International Maritime Association of the Mediterranean.
  16. Wang, J. Y., Akinturk, A., Bose, N. and Stephen, J., 2007, An Overview of Model Tests and Numerical Prediction for Propeller-ice Interaction, Proceedings of 8th Canadian Marine Hydrodynamics and Structures Conference CMHSC.
  17. Soininen, H., 1998, A Propeller-ice Contact Model, VTT Manufacturing Technology, Dissertation for the Degree of Doctor of Technology.
  18. Yuzhong, S. and Iwakiri, H., 1998, Estimation of Torque Used for Determining Pull-up Length of Keyless Propellers, Bulletin of the M.E.S.J., Vol. 27, No. 2, pp. 74-80.

Cited by

  1. Analysis and validation of a procedure for a lumped model of Polar Class ship shafting systems for transient torsional vibrations pp.1437-8213, 2017, https://doi.org/10.1007/s00773-017-0499-x